Some intuitionistic equivalents of classical principles for degree 2 formulas

被引:9
作者
Berardi, S [1 ]
机构
[1] Univ Turin, Dipartimento Informat, I-10149 Turin, Italy
关键词
excluded middle; Markov's principle; Konig's lemma; reverse mathematics; intuitionism; classical logic;
D O I
10.1016/j.apal.2005.04.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the restriction of classical principles like Excluded Middle, Markov's Principle. Konig's Lemma to arithmetical formulas of degree 2. For any such principle, we find simple mathematical statements which are intuitionistically equivalent to it, provided we restrict universal quantifications over maps to computable maps. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:185 / 200
页数:16
相关论文
共 10 条
[1]  
AKAMA Y, 2004, P LICS 2004
[2]   A generalization of a conservativity theorem for classical versus intuitionistic arithmetic [J].
Berardi, S .
MATHEMATICAL LOGIC QUARTERLY, 2004, 50 (01) :41-46
[3]  
BERARDI S, 2004, FORMAL TOPOLOGY GAME
[4]  
BERARDI S, 2005, INTUITIONISTIC MODEL
[5]  
Hayashi S, 2002, LECT NOTES ARTIF INT, V2533, P7
[6]  
Ishihara H., 2004, SURIKAISEKIKENKYUSHO, V1381, P108
[7]   Things that can and things that cannot be done in PRA [J].
Kohlenbach, U .
ANNALS OF PURE AND APPLIED LOGIC, 2000, 102 (03) :223-245
[8]  
LOMBARDI H, 1998, BUCHBERGER ALGORITHM
[9]  
MARCONE A, 1993, THESIS U PENNSYLVANI
[10]  
TOFTDAL M, 2004, LNCS, V3142