Constrained minimum fuzzy error entropy filtering for target tracking

被引:1
作者
Li, Liang-Qun [1 ,2 ]
Chen, Yong-Yin [1 ,2 ]
机构
[1] Shenzhen Univ, ATR Key Lab, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy error entropy; Kalman filter; Soft constraints; Adaptive kernel width; Target tracking; KALMAN FILTER;
D O I
10.1016/j.dsp.2022.103796
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To improve the accuracy of target tracking results in nonlinear systems under complex noise, the constrained minimum fuzzy error entropy Kalman filter (CMFEE-KF) is proposed. In this proposed filter, the double indices-induced fuzzy membership is introduced to represent the different effects of different error samples on the estimation results, solving the problem of the same weight in ordinary error entropy. And then, the minimum fuzzy error entropy criterion (MFEEC) is constructed and used to optimize the Kalman filter. In this proposed algorithm, error information is obtained by model reconstruction. Then the objective function is constructed based on MFEEC, and finally, the posterior state estimation is achieved by the fixed-point iteration method. In addition, soft constraints can be implemented by adding a regularization term into the loss function, deriving the CMFEE-KF. Simulations show that the proposed filter has strong stability and more accuracy in target tracking.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 40 条
[1]  
Amor N, 2022, Arxiv, DOI arXiv:1807.03463
[2]  
[Anonymous], 2022, IC REG DEV I IB SVEI
[3]  
Chadwick A.E., CLIMATE CHANGE COMMU, DOI DOI 10.1093/ACREFORE/9780190228613.001.0001/ACREFORE-9780190228613-E-22
[4]   Minimum Error Entropy Kalman Filter [J].
Chen, Badong ;
Dang, Lujuan ;
Gu, Yuantao ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (09) :5819-5829
[5]   Maximum correntropy Kalman filter [J].
Chen, Badong ;
Liu, Xi ;
Zhao, Haiquan ;
Principe, Jose C. .
AUTOMATICA, 2017, 76 :70-77
[6]   Insights Into the Robustness of Minimum Error Entropy Estimation [J].
Chen, Badong ;
Xing, Lei ;
Xu, Bin ;
Zhao, Haiquan ;
Principe, Jose C. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (03) :731-737
[7]   Generalized Correntropy for Robust Adaptive Filtering [J].
Chen, Badong ;
Xing, Lei ;
Zhao, Haiquan ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (13) :3376-3387
[8]   Kernel minimum error entropy algorithm [J].
Chen, Badong ;
Yuan, Zejian ;
Zheng, Nanning ;
Principe, Jose C. .
NEUROCOMPUTING, 2013, 121 :160-169
[9]   Survival Information Potential: A New Criterion for Adaptive System Training [J].
Chen, Badong ;
Zhu, Pingping ;
Principe, Jose C. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (03) :1184-1194
[10]   Fuzzy Kalman filtering [J].
Chen, GR ;
Xie, QX ;
Shieh, LS .
INFORMATION SCIENCES, 1998, 109 (1-4) :197-209