Optimal decay rate of the energy for wave equations with critical potential

被引:40
作者
Ikehata, Ryo [1 ]
Todorova, Grozdena [2 ]
Yordanov, Borislav [2 ]
机构
[1] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
基金
日本学术振兴会;
关键词
damped wave equation; critical potential; energy decay; finite speed of propagation; diffusive structure; TIME-DEPENDENT DISSIPATION; ASYMPTOTIC-BEHAVIOR; CRITICAL EXPONENT; SPACE;
D O I
10.2969/jmsj/06510183
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the long time behavior of solutions of the wave equation with a variable damping term V(x)u(t) in the case of critical decay V(x) >= V-0(1 + vertical bar x vertical bar(2))(-1/2) (see condition (A) below). The solutions manifest a new threshold effect with respect to the size of the coefficient V-0: for 1 < V-0 < N the energy decay rate is exactly t(-V0), while for V-0 >= N the energy decay rate coincides with the decay rate of the corresponding parabolic problem.
引用
收藏
页码:183 / 236
页数:54
相关论文
共 31 条
[1]  
Davies EB, 1998, MATH Z, V227, P511, DOI 10.1007/PL00004389
[2]   VARIATIONAL-PROBLEMS RELATED TO SELF-SIMILAR SOLUTIONS OF THE HEAT-EQUATION [J].
ESCOBEDO, M ;
KAVIAN, O .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (10) :1103-1133
[3]   Improved decay rates for solutions to one-dimensional linear and semilinear dissipative wave equations in all space [J].
Ikehata, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (02) :555-570
[4]  
Ikehata R., 2005, INT J PURE APPL MATH, V21, P19
[5]   Total energy decay for semilinear wave equations with a critical potential type of damping [J].
Ikehata, Ryo ;
Inoue, Yu-ki .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (04) :1396-1401
[6]   Critical Exponent for Semilinear Wave Equations with Space-Dependent Potential [J].
Ikehata, Ryo ;
Todorova, Grozdena ;
Yordanov, Borislav .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2009, 52 (03) :411-435
[9]  
Matsumura A, 2001, OSAKA J MATH, V38, P399
[10]  
Matsumura A., 1976, Publ. Res. Inst. Math. Sci, V12, P169, DOI DOI 10.2977/PRIMS/1195190962