Hausdorff moment problem: Reconstruction of probability density functions

被引:41
作者
Mnatsakanov, Robert M. [1 ,2 ]
机构
[1] W Virginia Univ, Dept Stat, Morgantown, WV 26506 USA
[2] NIOSH, Hlth Effects Lab Div, Morgantown, WV 26505 USA
关键词
D O I
10.1016/j.spl.2008.01.054
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of recovering a moment-determinate probability density function (pdf) from its moments is studied. The proposed construction provides a method for recovery of different pdfs via simple transformations of the moment sequences. Uniform and L-1-rates of convergence of moment-recovered pdfs are obtained. Finally, some applications and examples are briefly discussed. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1869 / 1877
页数:9
相关论文
共 23 条
  • [1] Akhiezer N. I., 1965, LECT APPROXIMATION T
  • [2] CONVERGENCE OF BEST ENTROPY ESTIMATES
    Borwein, J. M.
    Lewis, A. S.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (02) : 191 - 205
  • [3] BORWEIN JM, 1993, FUND THEOR, V53, P39
  • [4] Consistency of the beta kernel density function estimator
    Bouezmarni, T
    Rolin, JM
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (01): : 89 - 98
  • [5] REGULARIZED INVERSION OF NOISY LAPLACE TRANSFORMS
    CHAUVEAU, DE
    VANROOIJ, ACM
    RUYMGAART, FH
    [J]. ADVANCES IN APPLIED MATHEMATICS, 1994, 15 (02) : 186 - 201
  • [6] Beta kernel estimators for density functions
    Chen, SX
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 31 (02) : 131 - 145
  • [7] Chen SX, 2000, STAT SINICA, V10, P73
  • [8] Devroye L., 1984, NONPARAMETRIC DENSIT
  • [9] Feller W., 1971, An introduction to probability theory and its applications
  • [10] Entropy-convergence in Stieltjes and Hamburger moment problem
    Frontini, M
    Tagliani, A
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1997, 88 (01) : 39 - 51