Influence of the microstructure and mechanical strength of nanofibers of biodegradable polymers with hydroxyapatite in stem cells growth. Electrospinning, characterization and cell viability

被引:48
作者
Ribeiro Neto, Wilson A. [1 ]
Pereira, Ildeu H. L. [2 ]
Ayres, Eliane [3 ]
de Paula, Ana C. C. [3 ]
Averous, Luc [4 ]
Goes, Alfredo M. [3 ]
Orefice, Rodrigo L. [2 ]
Suman Bretas, Rosario Elida [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Mat Engn, Sao Carlos, SP, Brazil
[2] Univ Fed Minas Gerais, Dept Met & Mat, Belo Horizonte, MG, Brazil
[3] Univ Fed Minas Gerais, Inst Biol Sci, Belo Horizonte, MG, Brazil
[4] Univ Strasbourg, LIPHT ECPM, Strasbourg, France
关键词
Electrospinning; Bionanocomposites; Biopolymers; Nanohydroxyapatite; Stem cell; Cell viability; TRANSPORT-PROPERTIES; BLOWN FILMS; SCAFFOLDS; ACID); POLY(EPSILON-CAPROLACTONE); FIBERS; PCL;
D O I
10.1016/j.polymdegradstab.2012.03.048
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Nanofibers of poly (lactic acid) (PLA) and poly (caprolactone) (PCL) with different amounts of nanohydroxyapatite (nHA) were produced by electrospinning, changing both the applied voltage and collector's rotation. Characterization of the nanofibers by scanning and transmission electron microscopy (SEM. TEM), wide angle X-rays diffraction (WAXD), infrared (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMTA) showed that the PLA/nHA fibers had larger diameters, lower crystallinities, lower degradation temperatures and higher elastic modulus than the PCL/nHA nanofibers. The crystalline phases of the PLA/nHA fibers were a mixture of alpha and alpha' phases, while the crystalline phase of the PCL/nHA samples was mainly alpha phase. In both set of mats, the highest amount of viable cells with early osteogenic activity after 7 days was obtained with the mats with the highest amount of nHA (5 wt%), the lowest amount of crystallinity and the highest elastic modulus. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2037 / 2051
页数:15
相关论文
共 37 条
[21]   Computer simulation of electrospinning. Part I. Effect of solvent in electrospinning [J].
Lu, C ;
Chen, P ;
Li, JF ;
Zhang, YJ .
POLYMER, 2006, 47 (03) :915-921
[22]  
Manzine Costa Ligia Maria, 2010, Material Sciences and Applications, V1, P247, DOI 10.4236/msa.2010.14036
[23]   Stem cell-biomaterial interactions for regenerative medicine [J].
Martino, Sabata ;
D'Angelo, Francesco ;
Armentano, Ilaria ;
Maria Kenny, Jose ;
Orlacchio, Aldo .
BIOTECHNOLOGY ADVANCES, 2012, 30 (01) :338-351
[24]   Biodegradable polymers as biomaterials [J].
Nair, Lakshmi S. ;
Laurencin, Cato T. .
PROGRESS IN POLYMER SCIENCE, 2007, 32 (8-9) :762-798
[25]   Structural, thermal, mechanical and bioactivity evaluation of silver-loaded bovine bone hydroxyapatite grafted poly(ε-caprolactone) nanofibers via electrospinning [J].
Nirmala, R. ;
Nam, Ki Taek ;
Park, Dae Kwang ;
Woo-il, Baek ;
Navamathavan, R. ;
Kim, Hak Yong .
SURFACE & COATINGS TECHNOLOGY, 2010, 205 (01) :174-181
[26]   Polymorphic transition in disordered poly(L-lactide) crystals induced by annealing at elevated temperatures [J].
Pan, Pengju ;
Zhu, Bo ;
Kai, Weihua ;
Dong, Tungalag ;
Inoue, Yoshio .
MACROMOLECULES, 2008, 41 (12) :4296-4304
[27]   Fabrication of polymeric microfibers containing rice-like oligomeric hydrogel nanoparticles on their surface: A novel strategy in the electrospinning process [J].
Pant, Hem Raj ;
Baek, Woo-il ;
Nam, Ki Taek ;
Seo, Yun A. ;
Oh, Hyun-Ju ;
Kim, Hak Yong .
MATERIALS LETTERS, 2011, 65 (10) :1441-1444
[28]   Effect of different solvents on poly(caprolactone) (PCL) electrospun nonwoven membranes [J].
Qin, Xiaohong ;
Wu, Dequn .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2012, 107 (03) :1007-1013
[29]   Electrospinning jets and polymer nanofibers [J].
Reneker, Darrell H. ;
Yarin, Alexander L. .
POLYMER, 2008, 49 (10) :2387-2425
[30]   Poly(vinyl alcohol) and polyamide-66 nanocomposites prepared by electrospinning [J].
Ristolainen, N ;
Heikkilä, P ;
Harlin, A ;
Seppälä, J .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2006, 291 (02) :114-122