Compact composition operators on the Dirichlet space and capacity of sets of contact points

被引:16
作者
Lefevre, Pascal [1 ,2 ]
Li, Daniel [1 ,2 ]
Queffelec, Herve [3 ,4 ]
Rodriguez-Piazza, Luis [5 ,6 ]
机构
[1] Univ Lille Nord France, U Artois, Lab Math Lens, EA 2462, F-62300 Lens, France
[2] Fac Sci Jean Perrin, Federat CNRS Nord Pas Calais FR 2956, SP, F-62300 Lens, France
[3] Univ Lille Nord France, USTL, Lab Paul Painleve, UMR CNRS 8524, F-59655 Villeneuve Dascq, France
[4] Federat CNRS Nord Pas Calais FR 2956, F-59655 Villeneuve Dascq, France
[5] Univ Seville, Fac Matemat, Dept Anal Matemat, E-41080 Seville, Spain
[6] IMUS, Seville 41080, Spain
关键词
Bergman space; Bergman-Orlicz space; Composition operator; Dirichlet space; Hardy space; Hardy-Orlicz space; Logarithmic capacity; Schatten classes; PEAK SETS; HARDY;
D O I
10.1016/j.jfa.2012.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove several results about composition operators on the Dirichlet space D-*. For every compact set K subset of partial derivative D of logarithmic capacity Cap K = 0, there exists a Schur function phi both in the disk algebra A (D) and in D-* such that the composition operator C-phi is in all Schatten classes S-p (D-*), p > 0, and for which K = {e(jt); vertical bar phi(e(it))vertical bar = 1} = {e(it); phi(e(it)) = 1). For every bounded composition operator C-phi on D-* and every xi is an element of partial derivative D, the logarithmic capacity of {e(it); phi(*)(e(it)) = xi} is 0. Every compact composition operator C-phi on D-* is compact on B-2(psi) and on H-2(psi); in particular, C-phi is in every Schatten class S-p, p > 0, both on H-2 and on B-2. There exists a Schur function phi such that C-phi is compact on H-2(psi), but which is not even bounded on D-*. There exists a Schur function phi such that C-phi is compact on D-*, but in no Schatten class S-p (D-*). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:895 / 919
页数:25
相关论文
共 38 条
[1]  
[Anonymous], ENSEMBLES PARFAITS S
[2]  
[Anonymous], 1991, Banach Spaces for Analysts
[3]  
[Anonymous], T AM MATH S IN PRESS
[4]  
[Anonymous], 2007, MATH SURVEYS MONOGRA
[5]  
Arcozzi N, 2011, NEW YORK J MATH, V17A, P45
[6]  
Bennett C., 1988, Pure and App. Math., V129
[7]   Special sets [J].
Beurling, A .
ACTA MATHEMATICA, 1940, 72 (01) :1-13
[8]   ON THE PEAK SETS FOR HOLOMORPHIC LIPSCHITZ FUNCTIONS [J].
BRUNA, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (02) :257-272
[9]   SETS OF UNIQUENESS FOR FUNCTIONS REGULAR IN THE UNIT CIRCLE [J].
CARLESON, L .
ACTA MATHEMATICA, 1952, 87 (05) :325-345
[10]  
Carroll T., 1991, J. Operator Theory, V26, P109