Numerical Radius Inequalities Involving Accretive Operators

被引:0
作者
Jowkar, Nasrin [1 ]
Niknam, Assadollah [1 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159, Mashhad 91775, Razavi Khorasan, Iran
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2020年 / 44卷 / 06期
关键词
Numerical radius; Operator inequality; Accretive operator; Operator norm;
D O I
10.1007/s40995-020-00928-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate some new numerical radius inequalities for accretive operators. More precisely, we prove that if A; A(2) is an element of B(H)\{0}, 0 < m < M, and the operator C-m,C-M(A(2)) = (A* - mI) (MI -A) is accretive (i.e. Re < C-m,C-M (A(2))x,x > >= 0 for all x is an element of H), then 1/2 (parallel to A(2)parallel to(1/2) + parallel to A parallel to) <= (0.0708(m + M/2 root mM)(1/2) + 1)w(A), which is a reverse of the inequality w(A) <= 1/2 (parallel to A(2)parallel to(1/2) + parallel to A parallel to), and sharper than inequality parallel to A parallel to <= 2w(A), under a special condition. Here, w(.) and parallel to.parallel to are the numerical radius and the usual operator norm, respectively.
引用
收藏
页码:1653 / 1659
页数:7
相关论文
共 12 条
[1]   Numerical radius inequalities for n x n operator matrices [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 468 :18-26
[2]  
Almouty F, 2000, TOPICS PROBLEMS MATH
[3]   ON THE SINGULAR-VALUES OF A PRODUCT OF OPERATORS [J].
BHATIA, R ;
KITTANEH, F .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :272-277
[4]  
Dragomir SS, 2013, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-3-319-01448-7
[5]  
Gustafson K.E., 1997, Numerical Range
[6]   Numerical Radius Inequalities for Certain 2 x 2 Operator Matrices [J].
Hirzallah, Omar ;
Kittaneh, Fuad ;
Shebrawi, Khalid .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (01) :129-147
[7]  
Kadelburg Z, 2005, TEACH MATH-SERB, V8, P31
[8]   Numerical radius inequalities for Hilbert space operators [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2005, 168 (01) :73-80
[9]   A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2003, 158 (01) :11-17
[10]   Cartesian decomposition and numerical radius inequalities [J].
Kittaneh, Fuad ;
Moslehian, Mohammad Sal ;
Yamazaki, Takeaki .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 :46-53