Mixed construction of OOC for optical code division multiple access networks

被引:4
作者
Li, Xiyang [1 ]
Shum, Kenneth W. [2 ]
机构
[1] Guangxi Teachers Educ Univ, Sch Math & Stat, Nanning 530299, Peoples R China
[2] Chinese Univ Hong Kong Shenzhen, Sch Sci & Engn, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
code division multiple access; orthogonal codes; optical fibre networks; search problems; optical code division multiple access networks; optical orthogonal codes; optical wireless systems; meta-heuristic search algorithm; mixed construction; mathematical methods; search algorithms; OOC; construction method; ORTHOGONAL CODES; COMBINATORIAL CONSTRUCTIONS; DESIGN;
D O I
10.1049/iet-com.2018.5602
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optical orthogonal codes play an important role in optical code division multiple access networks and optical wireless systems. In this study, by combining combinatorial design and meta-heuristic search algorithm, a mixed construction of $(v,k,1)$(v,k,1)-OOCs is proposed. The mixed construction enjoys the benefits of both mathematical methods and search algorithms and can be used to produce OOCs with large and flexible parameters. Numerical results show that some of the OOCs obtained by this construction have more codewords in comparison with the construction method using outer-product matrix.
引用
收藏
页码:837 / 841
页数:5
相关论文
共 19 条
[1]  
An XQ, 2002, 2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, P96, DOI 10.1109/ICCCAS.2002.1180580
[2]  
Arnon S, 2012, ADVANCED OPTICAL WIRELESS COMMUNICATION SYSTEMS, P1, DOI 10.1017/CBO9780511979187
[3]   ORTHOGONAL ARRAYS OF STRENGTH 2 AND 3 [J].
BOSE, RC ;
BUSH, KA .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04) :508-524
[4]   Cyclic designs with block size 4 and related optimal optical orthogonal codes [J].
Buratti, M .
DESIGNS CODES AND CRYPTOGRAPHY, 2002, 26 (1-3) :111-125
[5]   Combinatorial constructions of optimal optical orthogonal codes with weight 4 [J].
Chang, YX ;
Fuji-Hara, R ;
Miao, Y .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (05) :1283-1292
[6]   Outer-product matrix representation of optical orthogonal codes [J].
Charmchi, H ;
Salehi, JA .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2006, 54 (06) :983-989
[7]   Optimal (n,4,2)-OOC of small orders [J].
Chu, WS ;
Colbourn, CJ .
DISCRETE MATHEMATICS, 2004, 279 (1-3) :163-172
[8]   OPTICAL ORTHOGONAL CODES - DESIGN, ANALYSIS, AND APPLICATIONS [J].
CHUNG, FRK ;
SALEHI, JA ;
WEI, VK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (03) :595-604
[9]   USING SIMULATED ANNEALING TO DESIGN GOOD CODES. [J].
El Gamal, Abbas A. ;
Hemachandra, Lane A. ;
Shperling, Itzhak ;
Wei, Victor K. .
IEEE Transactions on Information Theory, 1987, IT-33 (01) :116-123
[10]   Optical orthogonal codes: Their bounds and new optimal constructions [J].
Fuji-Hara, R ;
Miao, Y .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) :2396-2406