Fully Integrated Digital GaN-Based LSK Demodulator for High-Temperature Applications

被引:3
作者
Hassan, Ahmad [1 ]
Amer, Mostafa [1 ]
Savaria, Yvon [1 ]
Sawan, Mohamad [1 ,2 ,3 ]
机构
[1] Polytech Montreal, Dept Elect Engn, Montreal, PQ H3T 1J4, Canada
[2] Westlake Univ, Sch Engn, Hangzhou 310024, Peoples R China
[3] Westlake Inst Adv Study, Inst Adv Study, Hangzhou 310024, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Demodulation; Inverters; Gallium nitride; Logic gates; Threshold voltage; HEMTs; Delays; High-temperature ICs; GaN500; HFET; GaN demodulation system; high-temperature digital ICs; wireless sensor; GaN high-temperature characterization; ELECTRONICS; OPERATION; HEMTS;
D O I
10.1109/TCSII.2020.3010094
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present the first Gallium Nitride (GaN)-based demodulator system dedicated to demodulating Load-Shift Keying (LSK) modulated signals that can operate at high temperature (HT). GaN500 technology is adopted to implement the proposed demodulator. Stable DC output characteristics of epitaxial AlGaN/GaN Heterojunction Field Effect Transistors (HFETs) operating at up to 500 degrees C enable designing HT ICs. Conventional digital gates such as inverters, NAND2, NAND3, delay elements and a D Flip-Flop are employed to implement the proposed demodulator. The demodulation system is fabricated on a 2.67 mm(2) silicon carbide (SiC) substrate and experimentally validated at 160 degrees C, whereas the building blocks (inverters and NANDs) show a stable operation at HT up to 400 degrees C. A minimum of 1 V amplitude difference can be detected between the high voltage level (HVL = +/- 5 V) and low voltage level (LVL = +/- 4 V) of an applied LSK modulated signal to recover transmitted digital data. Two high-voltage supply levels (+/- 14 V) are required to operate the system. Its total power consumption is 3.4 W.
引用
收藏
页码:1579 / 1583
页数:5
相关论文
共 11 条
  • [1] Monolithic GaN Half-Bridge Stages With Integrated Gate Drivers for High Temperature DC-DC Buck Converters
    Cui, Miao
    Sun, Ruize
    Bu, Qinglei
    Liu, Wen
    Wen, Huiqing
    Li, Ang
    Liang, Yung C.
    Zhao, Cezhou
    [J]. IEEE ACCESS, 2019, 7 : 184375 - 184384
  • [2] Gao Z., 2015, 2015 6th International Conference on Power Electronics Systems and Applications (PESA), P1, DOI [DOI 10.1109/PESA.2015, 10.1109/pesa.2015]
  • [3] GaN Integration Technology, an Ideal Candidate for High-Temperature Applications: A Review
    Hassan, Ahmad
    Savaria, Yvon
    Sawan, Mohamad
    [J]. IEEE ACCESS, 2018, 6 : 78790 - 78802
  • [4] Electronics and Packaging Intended for Emerging Harsh Environment Applications: A Review
    Hassan, Ahmad
    Savaria, Yvon
    Sawan, Mohamad
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2018, 26 (10) : 2085 - 2098
  • [5] Hassan A, 2017, IEEE INT NEW CIRC, P133, DOI 10.1109/NEWCAS.2017.8010123
  • [6] Stable Operation of AlGaN/GaN HEMTs for 25 h at 400C in air
    Kargarrazi, Saleh
    Yalamarthy, Ananth Saran
    Satterthwaite, Peter F.
    Blankenberg, Scott William
    Chapin, Caitlin
    Senesky, Debbie G.
    [J]. IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2019, 7 (01) : 931 - 935
  • [7] Kwan A. M. H., 2012, P IEEE INT EL DEV M, P1
  • [8] InAlN/GaN HEMTs for Operation in the 1000 °C Regime: A First Experiment
    Maier, D.
    Alomari, M.
    Grandjean, N.
    Carlin, J. -F.
    Diforte-Poisson, M. -A.
    Dua, C.
    Delage, S.
    Kohn, E.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2012, 33 (07) : 985 - 987
  • [9] High-temperature electronics - A role for wide bandgap semiconductors?
    Neudeck, PG
    Okojie, RS
    Chen, LY
    [J]. PROCEEDINGS OF THE IEEE, 2002, 90 (06) : 1065 - 1076
  • [10] Digital Integrated Circuits on an E-Mode GaN Power HEMT Platform
    Tang, Gaofei
    Kwan, Alex M. H.
    Wong, Roy K. Y.
    Lei, Jiacheng
    Su, R. Y.
    Yao, F. W.
    Lin, Y. M.
    Yu, J. L.
    Tsai, Tom
    Tuan, H. C.
    Kalnitsky, Alexander
    Chen, Kevin J.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2017, 38 (09) : 1282 - 1285