Fast Bayesian approach for parameter estimation

被引:31
|
作者
Jin, Bangti [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
proper orthogonal decomposition; stochastic collocation method; Bayesian inference approach; reduced-order modeling; parameter estimation;
D O I
10.1002/nme.2319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents two techniques, i.e. the proper orthogonal decomposition (POD) and the stochastic collocation method (SCM), for constructing surrogate models to accelerate the Bayesian inference approach for parameter estimation problems associated with partial differential equations. POD is a model reduction technique that derives reduced-order models using an optimal problem-adapted basis to effect significant reduction of the problem size and hence computational cost. SCM is an uncertainty propagation technique that approximates the parameterized solution and reduces further forward solves to function evaluations. The utility of the techniques is assessed on the non-linear inverse problem of probabilistically calibrating scalar Robin coefficients from boundary measurements arising in the quenching process and non-destructive evaluation. A hierarchical Bayesian model that handles flexibly the regularization parameter and the noise level is employed, and the posterior state space is explored by the Markov chain Monte Carlo. The numerical results indicate that significant computational gains can be realized without sacrificing the accuracy. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:230 / 252
页数:23
相关论文
共 50 条
  • [22] Parameter estimation in a model for misclassified Markov data - a Bayesian approach
    Rosychuk, Rhonda J.
    Islam, Shofiqul
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (11) : 3805 - 3816
  • [23] Classical and Bayesian Approach in Estimation of Scale Parameter of Nakagami Distribution
    Ahmad, Kaisar
    Ahmad, S. P.
    Ahmed, A.
    JOURNAL OF PROBABILITY AND STATISTICS, 2016, 2016 : 1 - 8
  • [24] Coupled hydrogeophysical parameter estimation using a sequential Bayesian approach
    Rings, J.
    Huisman, J. A.
    Vereecken, H.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2010, 14 (03) : 545 - 556
  • [26] A Bayesian Data Analytics Approach to Buildings' Thermal Parameter Estimation
    Pathak, Nilavra
    Foulds, James
    Roy, Nirmalya
    Banerjee, Nilanjan
    Robucci, Ryan
    E-ENERGY'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, 2019, : 89 - 99
  • [27] A Bayesian Approach to Parameter Estimation in the Presence of Spatial Missing Data
    Panzera, Domenica
    Benedetti, Roberto
    Postiglione, Paolo
    SPATIAL ECONOMIC ANALYSIS, 2016, 11 (02) : 201 - 218
  • [28] Bayesian estimation of the biasing parameter for ridge regression: A novel approach
    Rashid, Fareeha
    Altaf, Saima
    Aslam, Muhammad
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (12) : 7215 - 7225
  • [29] A Bayesian Approach for Parameter Estimation With Uncertainty for Dynamic Power Systems
    Petra, Noemi
    Petra, Cosmin G.
    Zhang, Zheng
    Constantinescu, Emil M.
    Anitescu, Mihai
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (04) : 2735 - 2743
  • [30] Bayesian approach to the choice of smoothing parameter in kernel density estimation
    Gangopadhyay, AK
    Cheung, KN
    JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (06) : 655 - 664