Fast Bayesian approach for parameter estimation

被引:31
|
作者
Jin, Bangti [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
proper orthogonal decomposition; stochastic collocation method; Bayesian inference approach; reduced-order modeling; parameter estimation;
D O I
10.1002/nme.2319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents two techniques, i.e. the proper orthogonal decomposition (POD) and the stochastic collocation method (SCM), for constructing surrogate models to accelerate the Bayesian inference approach for parameter estimation problems associated with partial differential equations. POD is a model reduction technique that derives reduced-order models using an optimal problem-adapted basis to effect significant reduction of the problem size and hence computational cost. SCM is an uncertainty propagation technique that approximates the parameterized solution and reduces further forward solves to function evaluations. The utility of the techniques is assessed on the non-linear inverse problem of probabilistically calibrating scalar Robin coefficients from boundary measurements arising in the quenching process and non-destructive evaluation. A hierarchical Bayesian model that handles flexibly the regularization parameter and the noise level is employed, and the posterior state space is explored by the Markov chain Monte Carlo. The numerical results indicate that significant computational gains can be realized without sacrificing the accuracy. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:230 / 252
页数:23
相关论文
共 50 条
  • [1] A machine learning approach to Bayesian parameter estimation
    Nolan, Samuel
    Smerzi, Augusto
    Pezze, Luca
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [2] Porous Material Parameter Estimation: A Bayesian Approach
    Fackler, Cameron
    Dieckman, Eric
    Xiang, Ning
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2012, 1443 : 314 - 321
  • [3] Parameter estimation in batch polymerisation (a Bayesian approach)
    Lu, Z
    Martin, E
    Morris, J
    ADVANCES IN PROCESS CONTROL 6, 2001, : 165 - 172
  • [4] A Bayesian Approach for Parameter Estimation in Railway Systems
    Jaoua, Nouha
    Vanheeghe, Philippe
    Navarro, Nicolas
    Langlois, Olivier
    Iordache, Marius
    2018 4TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2018,
  • [5] A machine learning approach to Bayesian parameter estimation
    Samuel Nolan
    Augusto Smerzi
    Luca Pezzè
    npj Quantum Information, 7
  • [6] Fast Bayesian parameter estimation for stochastic logistic growth models
    Heydari, Jonathan
    Lawless, Conor
    Lydall, David A.
    Wilkinson, Darren J.
    BIOSYSTEMS, 2014, 122 : 55 - 72
  • [7] Bayesian approach to decompression sickness model parameter estimation
    Howle, L. E.
    Weber, P. W.
    Nichols, J. M.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 82 : 3 - 11
  • [8] Bayesian approach to parameter estimation of the generalized pareto distribution
    Bermudez, PD
    Turkman, MAA
    TEST, 2003, 12 (01) : 259 - 277
  • [9] Bayesian Approach for Parameter Estimation in Vehicle Lateral Dynamics
    Lionti, Fabien
    Gutowski, Nicolas
    Aubin, Sebastien
    Martinet, Philippe
    FOUNDATIONS OF INTELLIGENT SYSTEMS, ISMIS 2024, 2024, 14670 : 249 - 259
  • [10] Bayesian approach to parameter estimation of the generalized pareto distribution
    P. de Zea Bermudez
    M. A. Amaral Turkman
    Test, 2003, 12 (1) : 259 - 277