Vibration of externally-forced Froude pendulum

被引:12
作者
Litak, G [1 ]
Spuz-Szpos, G [1 ]
Szabelski, K [1 ]
Warminski, J [1 ]
机构
[1] Tech Univ Lublin, Dept Mech, PL-20618 Lublin, Poland
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1999年 / 9卷 / 03期
关键词
D O I
10.1142/S0218127499000407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motion of self-excited Froude pendulum under external forcing were analyzed. Differential equation of motion includes the nonlinear damping term of Rayleigh's type. Using multiple time scale method and Lyapunov theory, vibrations, synchronization and stability of the system were examined. Chaotic motion was analyzed here by means of Lyapunov exponent and Melnikov approach.
引用
收藏
页码:561 / 570
页数:10
相关论文
共 11 条
[1]  
Baker G.L., 1990, Chaotic Dynamics, an introduction
[2]  
Guckenheimer J., 2013, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, DOI DOI 10.1007/978-1-4612-1140-2
[3]  
LITAK G, 1996, P VIBR PHYS SYST 17, P188
[4]  
LITAK G, 1994, IF UMCS REPORT
[5]  
Minorsky N., 1962, NONLINEAR OSCILLATIO
[6]  
MOON FC, 1987, CHAOTICV VIBRATIONS
[7]   BIFURCATIONS IN A FORCED SOFTENING DUFFING OSCILLATOR [J].
NAYFEH, AH ;
SANCHEZ, NE .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1989, 24 (06) :483-497
[8]   THE MELNIKOV TECHNIQUE FOR HIGHLY DISSIPATIVE SYSTEMS [J].
SALAM, FMA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (02) :232-243
[9]   SELF-EXCITED SYSTEM VIBRATIONS WITH PARAMETRIC AND EXTERNAL EXCITATIONS [J].
SZABELSKI, K ;
WARMINSKI, J .
JOURNAL OF SOUND AND VIBRATION, 1995, 187 (04) :595-607
[10]  
WIGGINS S, 1988, GLOBAL BIFURCATIONS