Morse potential derived from first principles

被引:77
作者
Costa Filho, Raimundo N. [1 ]
Alencar, Geova [2 ]
Skagerstam, Bo-Sture [3 ,4 ]
Andrade, Jose S., Jr. [1 ]
机构
[1] Univ Fed Ceara, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil
[2] Univ Estadual Ceara, Fac Educ Ciencias & Letras Sertao Cent, BR-63900000 Quixada, Ceara, Brazil
[3] Norwegian Univ Sci & Technol, Dept Phys, N-7491 Trondheim, Norway
[4] CAS, N-0271 Oslo, Norway
关键词
MINIMAL UNCERTAINTIES; SYSTEMS; MECHANICS; MODEL;
D O I
10.1209/0295-5075/101/10009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that a direct connection can be drawn, based on fundamental quantum principles, between the Morse potential, extensively used as an empirical description for the atomic interaction in diatomic molecules, and the harmonic potential. This is conceptually achieved here through a non-additive translation operator, whose action leads to a perfect equivalence between the quantum harmonic oscillator in deformed space and the quantum Morse oscillator in regular space. In this way, our theoretical approach provides a distinctive first-principle rationale for anharmonicity, therefore revealing a possible quantum origin for several related properties as, for example, the dissociation energy of diatomic molecules and the deformation of cubic metals. Copyright (C) EPLA, 2013
引用
收藏
页数:4
相关论文
共 36 条
[1]   EMPIRICAL CHEMICAL PSEUDOPOTENTIAL THEORY OF MOLECULAR AND METALLIC BONDING [J].
ABELL, GC .
PHYSICAL REVIEW B, 1985, 31 (10) :6184-6196
[2]   Tsallis thermostatistics for finite systems: a Hamiltonian approach [J].
Adib, AB ;
Moreira, AA ;
Andrade, JS ;
Almeida, MP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 322 (1-4) :276-284
[3]   Thermostatistics of Overdamped Motion of Interacting Particles [J].
Andrade, J. S., Jr. ;
da Silva, G. F. T. ;
Moreira, A. A. ;
Nobre, F. D. ;
Curado, E. M. F. .
PHYSICAL REVIEW LETTERS, 2010, 105 (26)
[4]   Extended phase-space dynamics for the generalized nonextensive thermostatistics [J].
Andrade, JS ;
Almeida, MP ;
Moreira, AA ;
Farias, GA .
PHYSICAL REVIEW E, 2002, 65 (03)
[5]  
[Anonymous], 1994, Quimica Nova
[6]  
[Anonymous], 2009, SPRINGER
[7]  
Arfken G. B., 2000, Mathematical Methods for Physicists
[8]  
Bastard G., 1988, Wave Mechanics Applied to Semiconductor Heterostructures
[9]  
BEN DANIEL D. J., 1966, PHYS REV, V152, P683
[10]   A possible deformed algebra and calculus inspired in nonextensive thermostatistics [J].
Borges, EP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (1-3) :95-101