An experimental study on the fatigue performance of nanoparticle modified epoxy was conducted. Seven material systems were examined which were: neat epoxy (E), 6 and 12 weight percent (wt.%) silica nanoparticle modified epoxy (S6, S12), 6 and 12 wt.% rubber nanoparticle modified epoxy (R6, R12), 3 wt.% each of silica and rubber nanoparticle modified epoxy (S3R3) and 6 wt.% each of silica and rubber nanoparticle modified epoxy (S6R6). Effects of those nanoparticles on the fatigue threshold (Delta G(th) and Delta K-th) and fatigue crack propagation rates (da/dN) were studied. It was found that, compared to neat epoxy (E), nanosilica (S6, S12) increased Delta G(th) (and Delta K-th) but nanorubber (R6 and R12) did not. However, a synergistic effect was observed on the fatigue threshold when both silica and rubber nanoparticles were added into epoxy. All these nanoparticles, individually or conjointly, decreased da/dN with silica the most effective. Morphology of the fracture surface was examined to understand the role of nanoparticles on toughening mechanisms under cyclic loading, which depended on the applied Delta G levels. (C) 2012 Elsevier Ltd. All rights reserved.