A modular engineering strategy for high-level production of protopanaxadiol from ethanol by Saccharomyces cerevisiae

被引:26
作者
Zhao, Fanglong [1 ]
Bai, Peng [1 ]
Nan, Weihua [1 ]
Li, Dashuai [1 ]
Zhang, Chuanbo [1 ]
Lu, Chunzhe [1 ]
Qi, Haishan [1 ]
Lu, Wenyu [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Dept Biol Engn, Tianjin, Peoples R China
[2] Tianjin Univ, Minist Educ, Key Lab Syst Bioengn, Tianjin, Peoples R China
[3] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn, SynBio Res Platform, Tianjin, Peoples R China
关键词
protopanaxadiol; Saccharomyces cerevisiae; C-13-metabolic flux analysis; metabolic engineering; synthetic biology; GENE; BIOSYNTHESIS; OVEREXPRESSION; ACCUMULATION; PATHWAY; YEAST; LEADS;
D O I
10.1002/aic.16502
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Ethanol is a more reduced substrate than sugars. Here, C-13-metabolic flux analysis (MFA) revealed that ethanol catabolism could supply sufficient acetyl-CoA and reducing equivalent for PPD biosynthesis. Then, we described modular engineering strategy to optimize a multigene pathway for protopanaxadiol (PPD) production from ethanol in Saccharomyces cerevisiae. PPD biosynthesis was divided into four modules: mevalonate (MVA) pathway module, triterpene biosynthesis module, sterol biosynthesis module, and acetyl-CoA formation module. Combinatorially overexpressing every gene in MVA pathway and optimizing metabolic balance in triterpene biosynthesis module led to significantly enhanced PPD production (42.34 mg/L/OD600). In sterol biosynthesis module, fine-tuning lanosterol synthase gene (ERG7) expression using TetR-TetO gene regulation system enabled further production improvement (51.26 mg/L/OD600). Furthermore, increasing cytoplasmic acetyl-CoA supply by overexpressing a Salmonella ACS (acetyl-CoA synthetase gene) mutant ACS(seL641P) improved PPD production to 66.55 mg/L/OD600. In 5 L bioreactor, PPD production of the best-performing strain WLT-MVA5 reached 8.09 g/L, which has been the highest titer of plant triterpene produced in yeast. (c) 2018 American Institute of Chemical Engineers AIChE J, 65: 866-874, 2019
引用
收藏
页码:866 / 874
页数:9
相关论文
共 50 条
[31]   Organelle Engineering in Yeast: Enhanced Production of Protopanaxadiol through Manipulation of Peroxisome Proliferation in Saccharomyces cerevisiae [J].
Choi, Bo Hyun ;
Kang, Hyun Joon ;
Kim, Sun Chang ;
Lee, Pyung Cheon .
MICROORGANISMS, 2022, 10 (03)
[32]   Engineering of Saccharomyces cerevisiae for the production of (+)-ambrein [J].
Moser, Sandra ;
Leitner, Erich ;
Plocek, Thomas J. ;
Vanhessche, Koenraad ;
Pichler, Harald .
YEAST, 2020, 37 (01) :163-172
[33]   Metabolic Engineering of Saccharomyces cerevisiae for High-Level Friedelin via Genetic Manipulation [J].
Gao, Hai-Yun ;
Zhao, Huan ;
Hu, Tian-Yuan ;
Jiang, Zhou-Qian ;
Xia, Meng ;
Zhang, Yi-Feng ;
Lu, Yun ;
Liu, Yuan ;
Yin, Yan ;
Chen, Xiao-Chao ;
Luo, Yun-Feng ;
Zhou, Jia-Wei ;
Wang, Jia-Dian ;
Gao, Jie ;
Gao, Wei ;
Huang, Lu-Qi .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
[34]   Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production [J].
Blazeck, John ;
Miller, Jarrett ;
Pan, Anny ;
Gengler, Jon ;
Holden, Clinton ;
Jamoussi, Mariam ;
Alper, Hal S. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (19) :8155-8164
[35]   Metabolic Engineering of Saccharomyces cerevisiae for Production of Fragrant Terpenoids from Agarwood and Sandalwood [J].
Promdonkoy, Peerada ;
Sornlek, Warasirin ;
Preechakul, Thanchanok ;
Tanapongpipat, Sutipa ;
Runguphan, Weerawat .
FERMENTATION-BASEL, 2022, 8 (09)
[36]   Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production [J].
Hong, Juhyun ;
Park, Seong-Hee ;
Kim, Sujin ;
Kim, Seon-Won ;
Hahn, Ji-Sook .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (01) :211-223
[37]   High-yield production of protopanaxadiol from sugarcane molasses by metabolically engineered Saccharomyces cerevisiae [J].
Yuan Zhu ;
Jianxiu Li ;
Longyun Peng ;
Lijun Meng ;
Mengxue Diao ;
Shuiyuan Jiang ;
Jianbin Li ;
Nengzhong Xie .
Microbial Cell Factories, 21
[38]   Modular metabolic engineering of Bacillus amyloliquefaciens for high-level production of green biosurfactant iturin A [J].
She, Menglin ;
Zhou, Huijuan ;
Dong, Wanrong ;
Xu, Yuxiang ;
Gao, Lin ;
Gao, Jiaming ;
Yang, Yong ;
Yang, Zhifan ;
Cai, Dongbo ;
Chen, Shouwen .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2024, 108 (01)
[39]   High-Level Production of Isoleucine and Fusel Alcohol by Expression of the Feedback Inhibition-Insensitive Threonine Deaminase in Saccharomyces cerevisiae [J].
Isogai, Shota ;
Nishimura, Akira ;
Kotaka, Atsushi ;
Murakami, Naoyuki ;
Hotta, Natsuki ;
Ishida, Hiroki ;
Takagi, Hiroshi .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2022, 88 (05)
[40]   Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone [J].
Cardenas, Javier ;
Da Silva, Nancy A. .
METABOLIC ENGINEERING, 2014, 25 :194-203