A modular engineering strategy for high-level production of protopanaxadiol from ethanol by Saccharomyces cerevisiae

被引:26
作者
Zhao, Fanglong [1 ]
Bai, Peng [1 ]
Nan, Weihua [1 ]
Li, Dashuai [1 ]
Zhang, Chuanbo [1 ]
Lu, Chunzhe [1 ]
Qi, Haishan [1 ]
Lu, Wenyu [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Dept Biol Engn, Tianjin, Peoples R China
[2] Tianjin Univ, Minist Educ, Key Lab Syst Bioengn, Tianjin, Peoples R China
[3] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn, SynBio Res Platform, Tianjin, Peoples R China
关键词
protopanaxadiol; Saccharomyces cerevisiae; C-13-metabolic flux analysis; metabolic engineering; synthetic biology; GENE; BIOSYNTHESIS; OVEREXPRESSION; ACCUMULATION; PATHWAY; YEAST; LEADS;
D O I
10.1002/aic.16502
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Ethanol is a more reduced substrate than sugars. Here, C-13-metabolic flux analysis (MFA) revealed that ethanol catabolism could supply sufficient acetyl-CoA and reducing equivalent for PPD biosynthesis. Then, we described modular engineering strategy to optimize a multigene pathway for protopanaxadiol (PPD) production from ethanol in Saccharomyces cerevisiae. PPD biosynthesis was divided into four modules: mevalonate (MVA) pathway module, triterpene biosynthesis module, sterol biosynthesis module, and acetyl-CoA formation module. Combinatorially overexpressing every gene in MVA pathway and optimizing metabolic balance in triterpene biosynthesis module led to significantly enhanced PPD production (42.34 mg/L/OD600). In sterol biosynthesis module, fine-tuning lanosterol synthase gene (ERG7) expression using TetR-TetO gene regulation system enabled further production improvement (51.26 mg/L/OD600). Furthermore, increasing cytoplasmic acetyl-CoA supply by overexpressing a Salmonella ACS (acetyl-CoA synthetase gene) mutant ACS(seL641P) improved PPD production to 66.55 mg/L/OD600. In 5 L bioreactor, PPD production of the best-performing strain WLT-MVA5 reached 8.09 g/L, which has been the highest titer of plant triterpene produced in yeast. (c) 2018 American Institute of Chemical Engineers AIChE J, 65: 866-874, 2019
引用
收藏
页码:866 / 874
页数:9
相关论文
共 50 条
[21]   Advances in Metabolic Engineering of Saccharomyces cerevisiae for Cocoa Butter Equivalent Production [J].
Wang, Mengge ;
Wei, Yongjun ;
Ji, Boyang ;
Nielsen, Jens .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
[22]   Engineering Saccharomyces cerevisiae for high-level synthesis of fatty acids and derived products [J].
Fernandez-Moya, Ruben ;
Da Silva, Nancy A. .
FEMS YEAST RESEARCH, 2017, 17 (07)
[23]   Multi-modular metabolic engineering and efflux engineering for enhanced lycopene production in recombinant Saccharomyces cerevisiae [J].
Huang, Guangxi ;
Li, Jiarong ;
Lin, Jingyuan ;
Duan, Changqing ;
Yan, Guoliang .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2024, 51
[24]   Metabolic engineering strategies for improvement of ethanol production in cellulolytic Saccharomyces cerevisiae [J].
Song, Xiaofei ;
Li, Yuanzi ;
Wu, Yuzhen ;
Cai, Miao ;
Liu, Quanli ;
Gao, Kai ;
Zhang, Xiuming ;
Bai, Yanling ;
Xu, Haijin ;
Qiao, Mingqiang .
FEMS YEAST RESEARCH, 2018, 18 (08)
[25]   Systems Metabolic Engineering of Saccharomyces cerevisiae for the High-Level Production of (2S)-Eriodictyol [J].
Zhang, Siqi ;
Liu, Juan ;
Xiao, Zhiqiang ;
Tan, Xinjia ;
Wang, Yongtong ;
Zhao, Yifei ;
Jiang, Ning ;
Shan, Yang .
JOURNAL OF FUNGI, 2024, 10 (02)
[26]   CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in Saccharomyces cerevisiae [J].
Lim, Soo-Hwan ;
Baek, Jong-In ;
Jeon, Byeong-Min ;
Seo, Jung-Woo ;
Kim, Min-Sung ;
Byun, Ji-Young ;
Park, Soo-Hoon ;
Kim, Su-Jin ;
Lee, Ju-Young ;
Lee, Jun-Hyoung ;
Kim, Sun-Chang .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (21)
[27]   Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals [J].
Borodina, Irina ;
Nielsen, Jens .
BIOTECHNOLOGY JOURNAL, 2014, 9 (05) :609-620
[28]   Engineering Saccharomyces cerevisiae for Efficient Liquiritigenin Production [J].
Deng, Hanning ;
Li, Hongbiao ;
Li, Shan ;
Zhou, Jingwen .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2025, 73 (08) :4787-4796
[29]   High production of valencene in Saccharomyces cerevisiae through metabolic engineering [J].
Chen, Hefeng ;
Zhu, Chaoyi ;
Zhu, Muzi ;
Xiong, Jinghui ;
Ma, Hao ;
Zhuo, Min ;
Li, Shuang .
MICROBIAL CELL FACTORIES, 2019, 18 (01)
[30]   A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica [J].
Yanping Lu ;
Qingyu Yang ;
Zhanglin Lin ;
Xiaofeng Yang .
Microbial Cell Factories, 19