VisMed: A visual vocabulary approach for medical image indexing and retrieval

被引:0
|
作者
Lim, JH
Chevallet, JP
机构
[1] Inst Infocomm Res, Singapore 119613, Singapore
[2] CNRS, IPAL, French Natl Ctr Sci Res, Singapore 119613, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Voluminous medical images are generated daily. They are critical assets for medical diagnosis, research, and teaching. To facilitate automatic indexing and retrieval of large medical image databases, we propose a structured framework for designing and learning vocabularies of meaningful medical terms associated with visual appearance from image samples. These VisMed terms span a new feature space to represent medical image contents. After a multi-scale detection process, a medical image is indexed as compact spatial distributions of VisMed terms. A flexible tiling (FlexiTile) matching scheme is proposed to compare the similarity between two medical images of arbitrary aspect ratios. We evaluate the VisMed approach on the medical retrieval task of the ImageCLEF 2004 benchmark. Based on 2% of the 8725 CasImage collection, we cropped 1170 image regions to train and validate 40 VisMed terms using support vector machines. The Mean Average Precision (MAP) over 26 query topics is 0.4156, an improvement over all the automatic runs in ImageCLEF 2004.
引用
收藏
页码:84 / 96
页数:13
相关论文
共 50 条
  • [41] A hybrid approach for image retrieval with ontological content-based indexing
    Starostenko, O
    Chávez-Aragón, A
    Sánchez, JA
    Ostróvskaya, Y
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2005, 3773 : 997 - 1004
  • [42] Testing a vocabulary for image indexing and ground truthing
    Jörgensen, C
    Jörgensen, P
    INTERNET IMAGING III, 2002, 4672 : 207 - 215
  • [43] A fractals-inspired approach to binary image database indexing and retrieval
    Une approche inspirée du codage fractal pour l’indexation et la récupération d’images binaires
    Vissac, Mathieu (dugelay@laurel.ucsb.edu); Dugelay, Jean-Luc (rose@ece.ucsb.edu); Rose, Kenneth (rose@ece.ucsb.edu), 2000, Springer Science and Business Media Deutschland GmbH (55): : 3 - 4
  • [44] Fractals-inspired approach to binary image database indexing and retrieval
    Vissac, Mathieu
    Dugelay, Jean-Luc
    Rose, Kenneth
    Annales des Telecommunications/Annals of Telecommunications, 2000, 55 (03): : 194 - 200
  • [45] A hierarchical approach for low-access latency image indexing and retrieval
    Izquierdo, E
    Feng, J
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2001, : 38 - 41
  • [46] Image Retrieval Using Point- and Block-Based Visual Vocabulary
    Kuo, Chang-Ming
    Yang, Nai-Chung
    Kuo, Chung-Ming
    Huang, Liang-Kang
    2015 International Symposium on Next-Generation Electronics (ISNE), 2015,
  • [47] Texture Based Image Indexing and Retrieval
    Rao, N. Gnaneswara
    Kumar, V. Vijaya
    Krishna, V. Venkata
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2009, 9 (05): : 206 - 210
  • [48] Color indexing for efficient image retrieval
    Babu, G.Phanendra
    Mehtre, Babu M.
    Kankanhalli, Mohan S.
    Multimedia Tools and Applications, 1995, 1 (04): : 327 - 348
  • [49] The visual indexing vocabulary:: Developing a thesaurus for indexing images across diverse domains
    Jörgensen, C
    ASIST 2004: PROCEEDINGS OF THE 67TH ASIS&T ANNUAL MEETING, VOL 41, 2004: MANAGING AND ENHANCING INFORMATION: CULTURES AND CONFLICTS, 2004, 41 : 287 - 293
  • [50] Coherent Semantic-Visual Indexing for Large-Scale Image Retrieval in the Cloud
    Hong, Richang
    Li, Lei
    Cai, Junjie
    Tao, Dapeng
    Wang, Meng
    Tian, Qi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) : 4128 - 4138