A hybrid achromatic metalens

被引:164
作者
Balli, F. [1 ]
Sultan, M. [2 ]
Lami, Sarah K. [2 ]
Hastings, J. T. [2 ]
机构
[1] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA
[2] Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
FLAT OPTICS; LENS; POLARIZATION; RESOLUTION; PHASE;
D O I
10.1038/s41467-020-17646-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metalenses, ultra-thin optical elements that focus light using subwavelength structures, have been the subject of a number of recent investigations. Compared to their refractive counterparts, metalenses offer reduced size and weight, and new functionality such as polarization control. However, metalenses that correct chromatic aberration also suffer from markedly reduced focusing efficiency. Here we introduce a Hybrid Achromatic Metalens (HAML) that overcomes this trade-off and offers improved focusing efficiency over a broad wavelength range from 1000-1800 nm. HAMLs can be designed by combining recursive ray-tracing and simulated phase libraries rather than computationally intensive global search algorithms. Moreover, HAMLs can be fabricated in low-refractive index materials using multi-photon lithography for customization or using molding for mass production. HAMLs demonstrated diffraction limited performance for numerical apertures of 0.27, 0.11, and 0.06, with average focusing efficiencies greater than 60% and maximum efficiencies up to 80%. A more complex design, the air-spaced HAML, introduces a gap between elements to enable even larger diameters and numerical apertures. Metalenses that correct chromatic aberration also suffer from reduced focusing efficiency. Here, the authors introduce a Hybrid Achromatic Metalens which merges a metalens and phase plate to offer improved focusing efficiency over a broad wavelength range and diffraction limited imaging performance.
引用
收藏
页数:8
相关论文
共 34 条
[1]  
Arbabi A, 2016, NAT COMMUN, V7
[2]  
Arbabi A, 2015, NAT NANOTECHNOL, V10, P937, DOI [10.1038/nnano.2015.186, 10.1038/NNANO.2015.186]
[3]   Multiwavelength metasurfaces through spatial multiplexing [J].
Arbabi, Ehsan ;
Arbabi, Amir ;
Kamali, Seyedeh Mahsa ;
Horie, Yu ;
Faraon, Andrei .
SCIENTIFIC REPORTS, 2016, 6
[4]   Imaging with flat optics: metalenses or diffractive lenses? [J].
Banerji, Sourangsu ;
Meem, Monjurul ;
Majumder, Apratim ;
Vasquez, Fernando Guevara ;
Sensale-Rodriguez, Berardi ;
Menon, Rajesh .
OPTICA, 2019, 6 (06) :805-810
[5]   A review of metasurfaces: physics and applications [J].
Chen, Hou-Tong ;
Taylor, Antoinette J. ;
Yu, Nanfang .
REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (07)
[6]   A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures [J].
Chen, Wei Ting ;
Zhu, Alexander Y. ;
Sisler, Jared ;
Bharwani, Zameer ;
Capasso, Federico .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   A broadband achromatic metalens for focusing and imaging in the visible [J].
Chen, Wei Ting ;
Zhu, Alexander Y. ;
Sanjeev, Vyshakh ;
Khorasaninejad, Mohammadreza ;
Shi, Zhujun ;
Lee, Eric ;
Capasso, Federico .
NATURE NANOTECHNOLOGY, 2018, 13 (03) :220-+
[8]   Metasurface optics for full-color computational imaging [J].
Colburn, Shane ;
Zhan, Alan ;
Majumdar, Arka .
SCIENCE ADVANCES, 2018, 4 (02)
[9]  
Farn M. W., 1991, DIFFRACTIVE DOUBLET, V1354, P24
[10]   DIFFRACTIVE DOUBLETS CORRECTED AT 2 WAVELENGTHS [J].
FARN, MW ;
GOODMAN, JW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1991, 8 (06) :860-867