Effect of precursor pH on AuNP/MWCNT nanocomposites synthesized by plasma-induced non-equilibrium electrochemistry

被引:6
作者
Sun, Daye [1 ]
Maddi, Chiranjeevi [2 ]
Rafferty, Cormac [3 ]
Tang, Miao [4 ]
Chen, Mei [4 ]
Falzon, Brian G. [1 ]
Sarri, Gianluca [3 ]
Mariotti, Davide [2 ]
Maguire, Paul [2 ]
Sun, Dan [1 ]
机构
[1] Queens Univ, Sch Mech & Aerosp Engn, Adv Composites Res Grp ACRG, Belfast BT9 5AH, Antrim, North Ireland
[2] Ulster Univ, Nanotechnol & Integrated Bioengn Ctr, Coleraine BT37 OQB, Antrim, North Ireland
[3] Queens Univ, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland
[4] Queens Univ, Sch Med Dent & Biomed Sci, Wellcome Wolfson Inst Expt Med, Belfast BT9 7BL, Antrim, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
plasma-induced non-equilibrium electrochemistry; AuNP; MWCNT nanocomposites; pH; photothermal conversion; biocompatibility; GOLD NANOPARTICLES; CARBON NANOTUBES; DELIVERY; GROWTH; SIZE;
D O I
10.1088/1361-6463/ab9ee7
中图分类号
O59 [应用物理学];
学科分类号
摘要
In recent years, plasma-induced non-equilibrium electrochemistry (PiNE) has been increasingly used for the synthesis of nanomaterials. In this study, we investigated the effect of solution pH on the formation of AuNP/MWCNT nanocomposites synthesized by PiNE. It is found that resulting nanocomposite morphology can be manipulated by the solution pH with pH 2 giving the most uniformly distributed AuNP along the MWCNT surface during the nanocomposite formation. The detailed mechanisms of AuNP/MWCNT nanocomposites formation under different pH have been discussed. For selected AuNP/MWCNT, we further evaluated the photothermal conversion performance under a blue laser (wavelength 445 nm) and the material biocompatibility using HeLa cells. The promising photothermal capability and biocompatibility of the composite sample point to their potential future applications such as solar thermal conversion and healthcare technology.
引用
收藏
页数:9
相关论文
共 36 条
[1]   Crystalline Si nanoparticles below crystallization threshold: Effects of collisional heating in non-thermal atmospheric-pressure microplasmas [J].
Askari, S. ;
Levchenko, I. ;
Ostrikov, K. ;
Maguire, P. ;
Mariotti, D. .
APPLIED PHYSICS LETTERS, 2014, 104 (16)
[2]   Synthesis of monodispersed nanoparticles functionalized carbon nanotubes in plasma-ionic liquid interfacial fields [J].
Baba, Kazuhiko ;
Kaneko, Toshiro ;
Hatakeyama, Rikizo ;
Motomiya, Kenichi ;
Tohji, Kazuyuki .
CHEMICAL COMMUNICATIONS, 2010, 46 (02) :255-257
[3]   Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening [J].
Bastus, Neus G. ;
Comenge, Joan ;
Puntes, Victor .
LANGMUIR, 2011, 27 (17) :11098-11105
[4]   Applications of carbon nanotubes in drug delivery [J].
Bianco, A ;
Kostarelos, K ;
Prato, M .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2005, 9 (06) :674-679
[5]   Environmentally friendly nitrogen-doped carbon quantum dots for next generation solar cells [J].
Carolan, Darragh ;
Rocks, Conor ;
Padmanaban, Dilli Babu ;
Maguire, Paul ;
Svrcek, Vladimir ;
Mariotti, Davide .
SUSTAINABLE ENERGY & FUELS, 2017, 1 (07) :1611-1619
[6]   Diagnostics of atmospheric pressure microplasma with a liquid electrode [J].
Chen, Q. ;
Shirai, H. .
EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (06)
[7]   Reductants in Gold Nanoparticle Synthesis Using Gas-Liquid Interfacial Discharge Plasmas [J].
Chen, Qiang ;
Kaneko, Toshiro ;
Hatakeyama, Rikizo .
APPLIED PHYSICS EXPRESS, 2012, 5 (08)
[8]   Green Synthesis of Anisotropic Gold Nanoparticles for Photothermal Therapy of Cancer [J].
Fazal, Sajid ;
Jayasree, Aswathy ;
Sasidharan, Sisini ;
Koyakutty, Manzoor ;
Nair, Shantikumar V. ;
Menon, Deepthy .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (11) :8080-8089
[9]   Determination of size and concentration of gold nanoparticles from UV-Vis spectra [J].
Haiss, Wolfgang ;
Thanh, Nguyen T. K. ;
Aveyard, Jenny ;
Fernig, David G. .
ANALYTICAL CHEMISTRY, 2007, 79 (11) :4215-4221
[10]  
Hale DK., 1957, Nature, V179, P723, DOI [10.1038/179723b0, DOI 10.1038/179723B0]