LIBSVM: A Library for Support Vector Machines

被引:24719
作者
Chang, Chih-Chung [1 ]
Lin, Chih-Jen [1 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci, Taipei 106, Taiwan
基金
美国国家科学基金会;
关键词
Algorithms; Performance; Experimentation; Classification LIBSVM optimization regression support vector machines SVM; WORKING SET SELECTION;
D O I
10.1145/1961189.1961199
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
引用
收藏
页数:27
相关论文
共 36 条
  • [1] [Anonymous], P IEEE INT C COMP VI
  • [2] Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
  • [3] Training ν-support vector classifiers:: Theory and algorithms
    Chang, CC
    Lin, CJ
    [J]. NEURAL COMPUTATION, 2001, 13 (09) : 2119 - 2147
  • [4] Training ν-support vector regression:: Theory and algorithms
    Chang, CC
    Lin, CJ
    [J]. NEURAL COMPUTATION, 2002, 14 (08) : 1959 - 1977
  • [5] A study on SMO-type decomposition methods for support vector machines
    Chen, Pai-Hsuen
    Fan, Rong-En
    Lin, Chih-Jen
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (04): : 893 - 908
  • [6] A tutorial on v-support vector machines
    Chen, PH
    Lin, CJ
    Schölkopf, B
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2005, 21 (02) : 111 - 136
  • [7] SUPPORT-VECTOR NETWORKS
    CORTES, C
    VAPNIK, V
    [J]. MACHINE LEARNING, 1995, 20 (03) : 273 - 297
  • [8] Crisp D.J., 2000, ADV NEURAL INFORM PR, V12
  • [9] BDVal: reproducible large-scale predictive model development and validation in high-throughput datasets
    Dorff, Kevin C.
    Chambwe, Nyasha
    Srdanovic, Marko
    Campagne, Fabien
    [J]. BIOINFORMATICS, 2010, 26 (19) : 2472 - 2473
  • [10] Fan RE, 2005, J MACH LEARN RES, V6, P1889