Metabolic Labeling of Human Bone Marrow Mesenchymal Stem Cells for the Quantitative Analysis of their Chondrogenic Differentiation

被引:23
|
作者
Rocha, Beatriz [1 ]
Calamia, Valentina [1 ]
Mateos, Jesus [1 ]
Fernandez-Puente, Patricia [1 ]
Blanco, Francisco J. [1 ,2 ]
Ruiz-Romero, Cristina [1 ,2 ]
机构
[1] INIBIC Hosp Univ A Coruna, Rheumatol Div, ProteoRed ISCIII Prote Grp, La Coruna 15006, Spain
[2] Inst Salud Carlos III, CIBER BBN, Coruna, Spain
关键词
mesenchymal stem cells; chondrogenesis; proteomics; SILAC; bone marrow; chondrocytes; cartilage; PROTEOMIC ANALYSIS; PROGENITOR CELLS; IN-VITRO; OSTEOGENIC DIFFERENTIATION; ARTICULAR-CARTILAGE; CHONDROCYTES; PROTEIN; FIBRONECTIN; EXPRESSION; OSTEOARTHRITIS;
D O I
10.1021/pr300572r
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Human mesenchymal stem cells (hMSCs), residing in bone marrow as well as in the synovial lining of joints, can be triggered to differentiate toward chondrocytes. Thus, hMSCs harbor great therapeutic potential for the repair of cartilage defects in osteoarthritis (OA) and other articular diseases. However, the molecular mechanisms underlying the chondrogenesis process are still in part unknown. In this work, we applied for the first time the stable isotope labeling by amino acids in cell culture (SILAC) technique for the quantitative analysis of protein modulation during the chondrogenic differentiation process of hMSCs. First, we have standardized the metabolic labeling procedure on MSCs isolated from bone marrow (hBMSCs), and we have assessed the quality of chondrogenesis taking place in these conditions. Then, chondrogenic differentiation was induced on these labeled cells, and a quantitative proteomics approach has been followed to evaluate protein changes between two differentiation days. With this strategy, we could identify 622 different proteins by LC-MALDI-TOF/TOF analysis and find 65 proteins whose abundance was significantly modulated between day 2 and day 14 of chondrogenesis. Immunohistochemistry analyses were performed to verify the changes on a panel of six proteins that play different biological roles in the cell: fibronectin, gelsolin, vimentin, alpha-ATPase, mitochondrial superoxide dismutase, and cyclophilin A. All of these proteins were increased at day 14 compared to day 2 of chondrogenic induction, thus being markers of the enhanced extracellular matrix synthesis, cell adhesion, metabolism, and response to stress processes that take place in the early steps of chondrogenesis. Our strategy has allowed an additional insight into both specific protein function and the mechanisms of chondrogenesis and has provided a panel of protein markers of this differentiation process in hBMSCs.
引用
收藏
页码:5350 / 5361
页数:12
相关论文
共 50 条
  • [21] Expansion and chondrogenic differentiation of human mesenchymal stem cells
    Weber, C.
    Gokorsch, S.
    Czermak, P.
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2007, 30 (07): : 611 - 618
  • [22] The Effect of the Microgravity Rotating Culture System on the Chondrogenic Differentiation of Bone Marrow Mesenchymal Stem Cells
    Wu, Xing
    Li, Shao-hua
    Lou, Lie-ming
    Chen, Zheng-rong
    MOLECULAR BIOTECHNOLOGY, 2013, 54 (02) : 331 - 336
  • [23] Icariin promotes directed chondrogenic differentiation of bone marrow mesenchymal stem cells but not hypertrophy in vitro
    Wang, Zhi Cong
    Sun, Hui Jun
    Li, Kai Hua
    Fu, Chao
    Liu, Mo Zhen
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2014, 8 (05) : 1528 - 1534
  • [24] Isolation and chondrogenic differentiation of bone marrow mesenchymal stem cells (MSC) from bovine fetuses
    Saldana, C.
    Peralta, O.
    REPRODUCTION IN DOMESTIC ANIMALS, 2012, 47 : 589 - 589
  • [25] miRNA-101 promotes chondrogenic differentiation in rat bone marrow mesenchymal stem cells
    Gao, Feng
    Peng, Chuangang
    Zheng, Changjun
    Zhang, Shanyong
    Wu, Minfei
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2019, 17 (01) : 175 - 180
  • [26] The Effect of the Microgravity Rotating Culture System on the Chondrogenic Differentiation of Bone Marrow Mesenchymal Stem Cells
    Xing Wu
    Shao-hua Li
    Lie-ming Lou
    Zheng-rong Chen
    Molecular Biotechnology, 2013, 54 : 331 - 336
  • [27] Primary Cilia in Chondrogenic Differentiation of Equine Bone Marrow Mesenchymal Stem Cells: Ultrastructural Study
    Jose Luesma, Maria
    Cantarero, Irene
    Ranera, Beatriz
    Rosa Remacha, Ana
    Castiella, Tomas
    Romero, Antonio
    Martin, Inmaculada
    Rodellar, Clementina
    Junquera, Concepcion
    JOURNAL OF EQUINE VETERINARY SCIENCE, 2016, 47 : 47 - 54
  • [28] Comparison of Chondrogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells with Cultured Chondrocytes and Bone Marrow Mesenchymal Stem Cells
    Havlas, V.
    Kos, P.
    Jendelova, P.
    Lesny, P.
    Trc, T.
    Sykova, E.
    ACTA CHIRURGIAE ORTHOPAEDICAE ET TRAUMATOLOGIAE CECHOSLOVACA, 2011, 78 (02) : 138 - 144
  • [29] Enhanced chondrogenic differentiation of human bone marrow mesenchymal stem cells on PCL/PLGA electrospun with different alignments and compositions
    Zamanlui, Soheila
    Mahmoudifard, Matin
    Soleimani, Masoud
    Bakhshandeh, Behnaz
    Vasei, Mohammad
    Faghihi, Shahab
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2018, 67 (01) : 50 - 60
  • [30] Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells treated by GSK-3 inhibitors
    Eslaminejad, Mohamadreza Baghaban
    Karimi, Negar
    Shahhoseini, Maryam
    HISTOCHEMISTRY AND CELL BIOLOGY, 2013, 140 (06) : 623 - 633