Radial X-Ray Diffraction Study of Static Strength of Tantalum to 80 GPa

被引:1
|
作者
Xiong, Lun [1 ,2 ,3 ]
Bai, Li-Gang [3 ]
Li, Xiao-Dong [3 ]
Liu, Jing [3 ]
机构
[1] Sichuan Univ Arts & Sci, Sch Intelligent Mfg, Dazhou 635000, Peoples R China
[2] Dazhou Ind Technol Inst Intelligent Mfg, Dazhou 635000, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
DIAMOND-ANVIL CELL; EQUATION-OF-STATE; LATTICE STRAINS; NONHYDROSTATIC COMPRESSION; PRESSURE DERIVATIVES; ELASTIC-MODULI; TUNGSTEN; MOLYBDENUM; ALLOYS; GOLD;
D O I
10.1088/0256-307X/34/10/106101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the strength and texture of tantalum (Ta) under uniaxial compression up to 80 GPa using an angle-dispersive radial x-ray diffraction technique together with the lattice strain theory in a diamond anvil cell at ambient temperature. The ratio of differential stress to shear modulus (t/G.) is found to remain constant above similar to 60 GPa, indicating that the Ta starts to experience macro yield with plastic deformation at this pressure. Combined with independent constraints on the high-pressure shear modulus, we find that the Ta sample could support a differential stress of similar to 4.67 GPa when it starts to yield with plastic deformation at similar to 60 GPa under uniaxial compression. The differential stress in Ta ranges from 0.216 GPa to 4.67 GPa with pressure increasing from 1 GPa to 60 GPa and can be expressed as l = 0.199(33) + 0.075(1) P, where P is the pressure in GPa. A maximum differential stress as high as similar to 5.37 GPa can be supported by Ta at the high pressure of similar to 80 GPa. In addition, we investigate the texture of Ta under nonhydrostatic compression to 80 GPa using the software package material analysis using diffraction. It is proven that the plastic deformation due to stress under high pressures is responsible for the development of texture.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] X-Ray Diffraction of Ramp-Compressed Silicon to 390 GPa
    Gong, X.
    Polsin, D. N.
    Paul, R.
    Henderson, B. J.
    Eggert, J. H.
    Coppari, F.
    Smith, R. F.
    Rygg, J. R.
    Collins, G. W.
    PHYSICAL REVIEW LETTERS, 2023, 130 (07)
  • [22] Single-crystal X-ray diffraction of fluorapatite to 61 GPa
    Rucks, Melinda J. J.
    Finkelstein, Gregory J. J.
    Zhang, Dongzhou
    Dera, Przemyslaw K. K.
    Duffy, Thomas S. S.
    AMERICAN MINERALOGIST, 2023, 108 (04) : 731 - 737
  • [23] High pressure x-ray diffraction techniques with synchrotron radiation
    Liu, Jing
    CHINESE PHYSICS B, 2016, 25 (07)
  • [24] Radial X-Ray Diffraction Study of Superhard Early Transition Metal Dodecaborides under High Pressure
    Lei, Jialin
    Akopov, Georgiy
    Yeung, Michael T.
    Yan, Jinyuan
    Kaner, Richard B.
    Tolbert, Sarah H.
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (22)
  • [25] X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram
    Santamaria-Perez, D.
    Ross, M.
    Errandonea, D.
    Mukherjee, G. D.
    Mezouar, M.
    Boehler, R.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (12)
  • [26] Elastic moduli and strength of nanocrystalline cubic BC2N from x-ray diffraction under nonhydrostatic compression
    Dong, Haini
    He, Duanwei
    Duffy, Thomas S.
    Zhao, Yusheng
    PHYSICAL REVIEW B, 2009, 79 (01)
  • [27] Single-crystal X-ray diffraction of wustite to 30 GPa hydrostatic pressure
    Shu, JF
    Mao, HK
    Hu, JZ
    Fei, YW
    Hemley, RJ
    NEUES JAHRBUCH FUR MINERALOGIE-ABHANDLUNGEN, 1998, 172 (2-3): : 309 - 323
  • [28] High pressure X-ray diffraction experiments on NpS and PuS up to 60 GPa
    LE Bihan, T
    Heathman, S
    Rebizant, J
    HIGH PRESSURE RESEARCH, 1997, 15 (06) : 387 - 392
  • [29] An x-ray study of palladium hydrides up to 100 GPa: Synthesis and isotopic effects
    Guigue, Bastien
    Geneste, Gregory
    Leridon, Brigitte
    Loubeyre, Paul
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (07)
  • [30] X-ray diffraction measurements and pressure determination in nanosecond compression of solids up to 600 GPa
    Coppari, F.
    Fratanduono, D. E.
    Millot, M.
    Kraus, R. G.
    Lazicki, A.
    Rygg, J. R.
    Smith, R. F.
    Eggert, J. H.
    PHYSICAL REVIEW B, 2022, 106 (13)