Application of Multiplicative Regularization for Electrical Impedance Tomography

被引:0
|
作者
Zhang, Ke [1 ]
Li, Maokun [1 ]
Yang, Fan [1 ]
Xu, Shenheng [1 ]
Abubakar, Aria [2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Microwave & Digital Commun, Beijing 100084, Peoples R China
[2] Schlumberger, Houston, TX 77478 USA
基金
美国国家科学基金会;
关键词
Electrical impedance tomography (EIT); multiplicative regularization; total variation (TV); Gauss-Newton method; finite-element method (FEM); INVERSION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multiplicative regularization scheme with edge-preserving characteristics is applied to the inversion of electrical impedance tomography (EIT) data. This scheme employs a multiplicative cost function of a weighted L2-norm regularization function and the data misfit function. It avoids the use of a weighting factor when the regularization term is added to the cost function and allows an adaptive weighting between data misfit and the regularization function. Gauss-Newton method is used to minimize the multiplicative cost function. In this work, we extend the weighted L2-norm regularization scheme onto a triangular grid with an updated formula for gradient and divergence operators. This scheme is tested using synthetic data. The reconstructed images show good piecewise constant characteristics and noise-resistance performance.
引用
收藏
页码:27 / 28
页数:2
相关论文
共 50 条
  • [21] Identifying conductivity in electrical impedance tomography with total variation regularization
    Michael Hinze
    Barbara Kaltenbacher
    Tran Nhan Tam Quyen
    Numerische Mathematik, 2018, 138 : 723 - 765
  • [22] Magnetic detection electrical impedance tomography with total variation regularization
    Hao, Liling
    Li, Gang
    Xu, Lisheng
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 (06) : 2857 - 2864
  • [23] Four-dimensional regularization for Electrical Impedance Tomography imaging
    Dai, Tao
    Soleimani, Manuchehr
    Adler, Andy
    13TH INTERNATIONAL CONFERENCE ON ELECTRICAL BIOIMPEDANCE AND THE 8TH CONFERENCE ON ELECTRICAL IMPEDANCE TOMOGRAPHY 2007, 2007, 17 : 408 - +
  • [24] Open-electrical impedance tomography with variation regularization algorithm
    Huang, Song
    He, Wei
    Luo, Ci-Yong
    Chongqing Daxue Xuebao/Journal of Chongqing University, 2011, 34 (10): : 1 - 7
  • [25] A reconstruction algorithm for electrical impedance tomography based on sparsity regularization
    Jin, Bangti
    Khan, Taufiquar
    Maass, Peter
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 89 (03) : 337 - 353
  • [26] Electrical impedance tomography for clinical application
    Xu ShaoFeng
    Shi Yan
    Cai MaoLin
    Qi HaiTao
    Wang YiXuan
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (06) : 1433 - 1434
  • [27] Electrical impedance tomography for clinical application
    XU ShaoFeng
    SHI Yan
    CAI MaoLin
    QI HaiTao
    WANG YiXuan
    Science China(Technological Sciences), 2022, (06) : 1433 - 1434
  • [28] Electrical impedance tomography for clinical application
    ShaoFeng Xu
    Yan Shi
    MaoLin Cai
    HaiTao Qi
    YiXuan Wang
    Science China Technological Sciences, 2022, 65 : 1433 - 1434
  • [29] Electrical impedance tomography for clinical application
    XU ShaoFeng
    SHI Yan
    CAI MaoLin
    QI HaiTao
    WANG YiXuan
    Science China(Technological Sciences), 2022, 65 (06) : 1433 - 1434
  • [30] Electrical Impedance Tomography Reconstruction using Hybrid Variation Regularization Algorithm
    Zhang, Shuai
    Guo, Yunge
    Zhang, Xueying
    Xu, Guizhi
    2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,