A geometric Newton-Raphson strategy

被引:7
|
作者
Kallay, M [1 ]
机构
[1] Microsoft Corp, Redmond, WA 98052 USA
关键词
curves; distance; intersection;
D O I
10.1016/S0167-8396(01)00070-X
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In the standard Newton-Raphson algorithm for solving nonlinear equations, a new guess is computed by solving a linear approximation of the problem at the current guess. A similar, very effective strategy is proposed here for solving geometric problems (e.g., finding intersections) on general plane curves. To compute a new guess, solve an elementary geometric approximation of the problem at the current guess. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:797 / 803
页数:7
相关论文
共 50 条
  • [31] Newton-Raphson consensus for distributed convex optimization
    Zanella, Filippo
    Varagnolo, Damiano
    Cenedese, Angelo
    Pillonetto, Gianluigi
    Schenato, Luca
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 5917 - 5922
  • [32] OPTIMAL VALUE FOR THE NEWTON-RAPHSON DIVISION ALGORITHM
    PARKER, A
    HAMBLEN, JO
    INFORMATION PROCESSING LETTERS, 1992, 42 (03) : 141 - 144
  • [33] Newton-Raphson Consensus for Distributed Convex Optimization
    Varagnolo, Damiano
    Zanella, Filippo
    Cenedese, Angelo
    Pillonetto, Gianluigi
    Schenato, Luca
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (04) : 994 - 1009
  • [34] COVARIANCE FACTORIZATION VIA NEWTON-RAPHSON ITERATION
    ANDERSON, BDO
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (02) : 183 - 187
  • [35] Newton-Raphson approach for the analysis of ferroresonant circuits
    Universidade Federal de Paraiba, Campina Grande, Brazil
    IEE Proc Gener Transm Distrib, 5 (489-494):
  • [36] GENERAL FLASH CALCULATION BY NEWTON-RAPHSON METHOD
    HIROSE, Y
    KAWASE, Y
    KUDOH, M
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1978, 11 (02) : 150 - 152
  • [37] PIECEWISE NEWTON-RAPHSON METHOD - EXACT MODEL
    KESAVAN, HK
    BHAT, MV
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1974, PA93 (06): : 1734 - 1734
  • [38] On the choice of initial guesses for the Newton-Raphson algorithm
    Casella, Francesco
    Bachmann, Bernhard
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 398
  • [39] A GENERALIZED NEWTON-RAPHSON METHOD USING CURVATURE
    LEE, IW
    JUNG, GH
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1995, 11 (09): : 757 - 763
  • [40] Response: Did Newton-Raphson really fail?
    Meng, Xiao-Li
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2014, 23 (03) : 312 - 314