Optimal dividend strategies for a risk process under force of interest

被引:49
作者
Albrecher, Hansjoerg [1 ,2 ]
Thonhauser, Stefan [1 ]
机构
[1] Austrian Acad Sci, Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[2] Univ Linz, Dept Financial Math, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1016/j.insmatheco.2008.03.012
中图分类号
F [经济];
学科分类号
02 ;
摘要
In the classical Cramer-Lundberg model in risk theory the problem of maximizing the expected cumulated discounted dividend payments until ruin is a widely discussed topic. In the most general case within that framework it is proved [Gerber, H.U., 1968. Entscheidungskriterien fuer den zusammengesetzten Poisson-prosess. Schweiz. Aktuarver. Mitt. 1, 185-227; Azcue, P., Muler, N., 2005. Optimal reinsurance and dividend distribution policies in the Cramer-Lundberg model. Math. Finance 15 (2) 261-308; Schmidli, H., 2008. Stochastic Control in Insurance. Springer] that the optimal dividend strategy is of band type. In the present paper we discuss this maximization problem in a generalized setting including a constant force of interest in the risk model. The value function is identified in the set of viscosity solutions of the associated Hamilton-Jacobi-Bellman equation and the optimal dividend strategy in this risk model with interest is derived, which in the general case is again of band type and for exponential claim sizes collapses to a barrier strategy. Finally, an example is constructed for Erlang(2)-claim sizes, in which the bands for the optimal strategy are explicitly calculated. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:134 / 149
页数:16
相关论文
共 15 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F, V55
[2]   On a gamma series expansion for the time-dependent probability of collective ruin [J].
Albrecher, H ;
Teugels, JL ;
Tichy, RF .
INSURANCE MATHEMATICS & ECONOMICS, 2001, 29 (03) :345-355
[3]  
[Anonymous], 1993, APPL MATH
[4]   Optimal reinsurance and dividend distribution policies in the Cramer-Lundberg model [J].
Azcue, P ;
Muler, N .
MATHEMATICAL FINANCE, 2005, 15 (02) :261-308
[5]  
Benth F.E., 2001, Finance Stochastic, V5, P275, DOI DOI 10.1007/PL00013538
[6]  
Cont R., 2004, CRC FINANCIAL MATH S
[7]  
GERBER HU, 1968, SCHWEIZ AKTUARVER MI, V1, P185
[8]  
MNIF M, 2005, STOCHASTICS, V77, P455
[9]   RISK THEORY IN A STOCHASTIC ECONOMIC-ENVIRONMENT [J].
PAULSEN, J .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1993, 46 (02) :327-361
[10]   Ruin theory with stochastic return on investments [J].
Paulsen, J ;
Gjessing, HK .
ADVANCES IN APPLIED PROBABILITY, 1997, 29 (04) :965-985