Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws

被引:694
作者
Kipping, David M. [1 ]
机构
[1] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
关键词
methods: analytical; stars: atmospheres; PROPER MOTION; PLANET; PHOTOMETRY; EXOMOONS; MODEL; HUNT; STAR;
D O I
10.1093/mnras/stt1435
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Stellar limb darkening affects a wide range of astronomical measurements and is frequently modelled with a parametric model using polynomials in the cosine of the angle between the line of sight and the emergent intensity. Two-parameter laws are particularly popular for cases where one wishes to fit freely for the limb darkening coefficients (i.e. an uninformative prior) due to the compact prior volume and the fact that more complex models rarely obtain unique solutions with the present data. In such cases, we show that the two limb darkening coefficients are constrained by three physical boundary conditions, describing a triangular region in the two-dimensional parameter space. We show that uniformly distributed samples may be drawn from this region with optimal efficiency by a technique developed by computer graphical programming: triangular sampling. Alternatively, one can make draws using a uniform, bivariate Dirichlet distribution. We provide simple expressions for these parametrizations for both techniques applied to the case of quadratic, square-root and logarithmic limb darkening laws. For example, in the case of the popular quadratic law, we advocate fitting for q(1) = (u(1) + u(2))(2) and q(2) = 0.5u(1)(u(1) + u(2))(-1) with uniform priors in the interval [0, 1] to implement triangular sampling easily. Employing these parametrizations allows one to derive model parameters which fully account for our ignorance about the intensity profile, yet never explore unphysical solutions, yielding robust and realistic uncertainty estimates. Furthermore, in the case of triangular sampling with the quadratic law, our parametrization leads to significantly reduced mutual correlations and provides an alternative geometric explanation as to why naively fitting the quadratic limb darkening coefficients precipitates strong correlations in the first place.
引用
收藏
页码:2152 / 2160
页数:9
相关论文
共 36 条
[31]   Properties of analytic transit light-curve models [J].
Pal, Andras .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 390 (01) :281-288
[32]   Stellar limb-darkening coefficients for CoRot and Kepler [J].
Sing, D. K. .
ASTRONOMY & ASTROPHYSICS, 2010, 510
[33]  
Skilling J, 2004, AIP CONF PROC, V735, P395, DOI 10.1063/1.1835238
[34]  
Turk G., 1990, GRAPHICS GEMS GENERA, P24
[35]   NEW LIMB-DARKENING COEFFICIENTS FOR MODELING BINARY STAR LIGHT CURVES [J].
VANHAMME, W .
ASTRONOMICAL JOURNAL, 1993, 106 (05) :2096-2117
[36]   Limb-darkening measurements for a cool red giant in microlensing event OGLE 2004-BLG-482 [J].
Zub, M. ;
Cassan, A. ;
Heyrovsky, D. ;
Fouque, P. ;
Stempels, H. C. ;
Albrow, M. D. ;
Beaulieu, J-P ;
Brillant, S. ;
Christie, G. W. ;
Kains, N. ;
Kozlowski, S. ;
Kubas, D. ;
Wambsganss, J. ;
Batista, V. ;
Bennett, D. P. ;
Cook, K. ;
Coutures, C. ;
Dieters, S. ;
Dominik, M. ;
Prester, D. Dominis ;
Donatowicz, J. ;
Greenhill, J. ;
Horne, K. ;
Jorgensen, U. G. ;
Kane, S. R. ;
Marquette, J-B ;
Martin, R. ;
Menzies, J. ;
Pollard, K. R. ;
Sahu, K. C. ;
Vinter, C. ;
Williams, A. ;
Gould, A. ;
Depoy, D. L. ;
Gal-Yam, A. ;
Gaudi, B. S. ;
Han, C. ;
Lipkin, Y. ;
Maoz, D. ;
Ofek, E. O. ;
Park, B-G ;
Pogge, R. W. ;
McCormick, J. ;
Udalski, A. ;
Szymanski, M. K. ;
Kubiak, M. ;
Pietrzynski, G. ;
Soszynski, I. ;
Szewczyk, O. ;
Wyrzykowski, L. .
ASTRONOMY & ASTROPHYSICS, 2011, 525