Compatibility study of nanofiltration and reverse osmosis membranes with 1-cyclohexylpiperidenium bicarbonate solutions

被引:13
作者
Adhikari, Birendra [1 ]
Jones, Michael G. [1 ]
Orme, Christopher J. [1 ]
Wendt, Daniel S. [1 ]
Wilson, Aaron D. [1 ]
机构
[1] Idaho Natl Lab, POB 1625 MS 3732, Idaho Falls, ID 83415 USA
基金
美国能源部;
关键词
Forward osmosis; Nanofiltration; Reverse osmosis; Switchable polarity solvent; ORGANIC-SOLVENT NANOFILTRATION; SWITCHABLE POLARITY SOLVENTS; AMMONIA-CARBON DIOXIDE; DRAW SOLUTE; DESALINATION PROCESS; ENERGY-REQUIREMENTS; POLYMERIC MEMBRANES; PERMEATE FLUX; DRIVEN; PURIFICATION;
D O I
10.1016/j.memsci.2016.12.017
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Any forward osmosis (FO) based water treatment process using a thermolytic draw solute requires a method to remove/recycle low concentrations of residual draw solute contained in the product water. For switchable polarity solvent forward osmosis (SPS FO) this means the removal of residual tertiary amines from the product water. This study explores membrane filtration of 1-cyclohexylpiperidenium bicarbonate (CHP-H2CO3) draw solute under conditions relevant to the SPS FO process. Fourteen commercially available nanofiltration (NF) and reverse osmosis (RO) membranes were screened. Several NF membranes displayed good chemical compatibility at CHP-H2CO3 concentrations of 2.5 wt% or higher while maintaining fair selectivity, with flux normalized rejection of similar to 80-99% and flux normalized net driving pressure of 80-400 psi for the normalized flux of 20 LMH. Most sea water and brackish water RO membranes tested showed flux normalized rejection of above 98% and flux normalized net driving pressure of 300-900 psi. A two-pass NF/tap(')water (TW) RO system is proposed as an effective low-pressure method to remove residual CHP-H2CO3 from water.
引用
收藏
页码:228 / 235
页数:8
相关论文
共 33 条
[1]   Organic solvent resistant poly(ether-ether-ketone) nanofiltration membranes [J].
Burgal, Joao da Silva ;
Peeva, Ludmila G. ;
Kumbharkar, Santosh ;
Livingston, Andrew .
JOURNAL OF MEMBRANE SCIENCE, 2015, 479 :105-116
[2]   Hybrid polymer/MOF membranes for Organic Solvent Nanofiltration (OSN): Chemical modification and the quest for perfection [J].
Campbell, James ;
Burgal, Joao Da Silvao ;
Szekely, Gyorgy ;
Davies, R. P. ;
Braddock, D. Christopher ;
Livingston, Andrew .
JOURNAL OF MEMBRANE SCIENCE, 2016, 503 :166-176
[3]   Development of a Techno-Economic Model to Compare Ceramic and Polymeric Membranes [J].
Guerra, Katie ;
Pellegrino, John .
SEPARATION SCIENCE AND TECHNOLOGY, 2013, 48 (01) :51-65
[4]   Comprehensive Bench- and Pilot-Scale Investigation of Trace Organic Compounds Rejection by Forward Osmosis [J].
Hancock, Nathan T. ;
Xu, Pei ;
Heil, Dean M. ;
Bellona, Christopher ;
Cath, Tzahi Y. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (19) :8483-8490
[5]   Controlled surface morphology of polyamide membranes via the addition of co-solvent for improved permeate flux [J].
Kamada, Takashi ;
Ohara, Tomomi ;
Shintani, Takuji ;
Tsuru, Toshinori .
JOURNAL OF MEMBRANE SCIENCE, 2014, 467 :303-312
[6]   Predictive membrane transport models for Organic Solvent Nanofiltration: How complex do we need to be? [J].
Marchetti, Patrizia ;
Livingston, Andrew G. .
JOURNAL OF MEMBRANE SCIENCE, 2015, 476 :530-553
[7]   Effect of fouling layer spatial distribution on permeate flux: A theoretical and experimental study [J].
Martin, K. J. ;
Bolster, D. ;
Derlon, N. ;
Morgenroth, E. ;
Nerenberg, R. .
JOURNAL OF MEMBRANE SCIENCE, 2014, 471 :130-137
[8]   Osmotic processes for a sustainable 21st century [J].
McCutcheon, Jeffrey R. ;
Wang, Rong .
DESALINATION, 2013, 312 :1-1
[9]  
McCutcheon JR, 2004, ABSTR PAP AM CHEM S, V228, pU633
[10]   A novel ammonia-carbon dioxide forward (direct) osmosis desalination process [J].
McCutcheon, JR ;
McGinnis, RL ;
Elimelech, M .
DESALINATION, 2005, 174 (01) :1-11