Validating the physical model of a chaotic system by topological analysis

被引:2
作者
Used, Javier [1 ]
Carlos Martin, Juan [2 ]
机构
[1] Univ Rey Juan Carlos, Dept Fis, Nonlinear Dynam Chaos & Complex Syst Grp, Madrid 28933, Spain
[2] Univ Zaragoza, Dept Fis Aplicada, E-50009 Zaragoza, Spain
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 05期
关键词
UNSTABLE PERIODIC-ORBITS; TIME-SERIES; LASER; ATTRACTORS; DYNAMICS; RECONSTRUCTION;
D O I
10.1103/PhysRevE.87.052921
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Topological analysis is employed for the first time to our knowledge as a method of validation for a physical model describing a chaotic system. Topological analysis theory provides both away to characterize the topological structure of chaotic attractors by means of a set of integer numbers and a method to obtain this set departing from a time series generated by the chaotic system. The validation method proposed here consists of comparing the topological structure of chaotic attractors obtained from time series generated on the one hand by an experimental system and on the other hand by the numerical model under test. This procedure has been applied to an erbium-doped fiber laser subject to pump power sine-wave modulation.
引用
收藏
页数:8
相关论文
共 34 条
  • [1] Constraining the topology of neural networks to ensure dynamics with symmetry properties
    Aguirre, LA
    Lopes, RAM
    Amaral, GFV
    Letellier, C
    [J]. PHYSICAL REVIEW E, 2004, 69 (02): : 026701 - 1
  • [2] Modeling Nonlinear Dynamics and Chaos: A Review
    Aguirre, Luis A.
    Letellier, Christophe
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [3] Wavelet reconstruction of nonlinear dynamics
    Allingham, D
    West, M
    Mees, AI
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (11): : 2191 - 2201
  • [4] [Anonymous], 2011, The Topology of Chaos
  • [5] Learning chaotic attractors by neural networks
    Bakker, R
    Schouten, JC
    Giles, CL
    Takens, F
    van den Bleek, CM
    [J]. NEURAL COMPUTATION, 2000, 12 (10) : 2355 - 2383
  • [6] Reconstruction of time-delay systems from chaotic time series
    Bezruchko, BP
    Karavaev, AS
    Ponomarenko, VI
    Prokhorov, MD
    [J]. PHYSICAL REVIEW E, 2001, 64 (05): : 6 - 056216
  • [7] Birman J., 1983, Contemporary Mathematics, V20, P1, DOI DOI 10.1090/CONM/020/718132
  • [8] KNOTTED PERIODIC-ORBITS IN DYNAMICAL-SYSTEMS .1. LORENZ EQUATIONS
    BIRMAN, JS
    WILLIAMS, RF
    [J]. TOPOLOGY, 1983, 22 (01) : 47 - 82
  • [9] Extraction of nonlinear dynamics from short and noisy time series
    Boudjema, G
    Cazelles, B
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (11) : 2051 - 2069
  • [10] A nonhorseshoe template in a chaotic laser model
    Boulant, G
    Lefranc, M
    Bielawski, S
    Derozier, D
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (05): : 965 - 975