Using the SMG scheme to study the Rayleigh-Taylor instability growth in solids

被引:2
作者
Luttwak, Gabi [1 ]
机构
[1] Dynamic 123D Consulting, IL-3475859 Haifa, Israel
关键词
Rayleigh Taylor instability; Elastic-plastic flow; SMG scheme VIP limiter; Lagrange hydrodynamics; ALE; MMALE; ELASTIC-PLASTIC SOLIDS; NUMERICAL SIMULATIONS; CONSTITUTIVE MODEL; ACCELERATION; DEFORMATION;
D O I
10.1016/j.compfluid.2020.104603
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Rayleigh-Taylor instability RTI occurs while a less dense fluid is accelerating a denser one Rayleigh (1883); Taylor (1950)[1,2]. Under gravity the material strength damps and prevents RTI formation in solids. However, at higher accelerations RTI will prevail. The Staggered Mesh Godunov (SMG) scheme for Lagrangian Luttwak and Falcovitz (2006)[3] and ALE Luttwak and Falcovitz (2005)[4] hydrodynamics is applied to study the effect of yield strength on the RTI growth. A test problem is set up which extends for solids a well-known test for RTI growth in fluids Loubere et al. (2010)[5]. The SMG scheme employs frameinvariant slope limiters. The convex hull based VIP limiter Luttwak and Falcovitz (2011); Luttwak and Falcovitz (2010)[6,7] is used for vectors and oriented Bounding Box based limiter Luttwak (2015)[8] for the stress tensor. This way, we prevent numerical effects of symmetry breaking to interfere, while following the RTI growth. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
[21]   On the Rayleigh-Taylor instability induced atomization [J].
Dhivyaraja, K. ;
Jegan, M. ;
Vadivukkarasan, M. .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2021, 142
[22]   RAYLEIGH-TAYLOR INSTABILITY IN ELASTIC LIQUIDS [J].
AITKEN, LS ;
WILSON, SDR .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1993, 49 (01) :13-22
[23]   Compressible, In viscid Rayleigh-Taylor Instability [J].
Guo, Yan ;
Tice, Ian .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (02) :677-711
[24]   The Rayleigh-Taylor instability in a porous medium [J].
Forbes, Lawrence K. ;
Browne, Catherine A. ;
Walters, Stephen J. .
SN APPLIED SCIENCES, 2021, 3 (02)
[25]   Rayleigh-Taylor instability with gravity reversal [J].
Livescu, D. ;
Wei, T. ;
Brady, P. T. .
PHYSICA D-NONLINEAR PHENOMENA, 2021, 417
[26]   Derivation of energy gradient function for Rayleigh-Taylor instability [J].
Farahbakhsh, Iman ;
Dou, Hua-Shu .
FLUID DYNAMICS RESEARCH, 2018, 50 (04)
[27]   Effect of Initial Conditions on the Development of Rayleigh-Taylor Instability [J].
Rozanov, V. B. ;
Kuchugov, P. A. ;
Zmitrenko, N. V. ;
Yanilkin, Yu. V. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2015, 36 (02) :139-150
[28]   Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability [J].
de Frahan, M. T. Henry ;
Belof, J. L. ;
Cavallo, R. M. ;
Raevsky, V. A. ;
Ignatova, O. N. ;
Lebedev, A. ;
Ancheta, D. S. ;
El-dasher, B. S. ;
Florando, J. N. ;
Gallegos, G. F. ;
Johnsen, E. ;
LeBlanc, M. M. .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (22)
[29]   Intuitive calculation of the relativistic Rayleigh-Taylor instability linear growth rate [J].
Bret, Antoine .
LASER AND PARTICLE BEAMS, 2011, 29 (02) :255-257
[30]   Instability of the abstract Rayleigh-Taylor problem and applications [J].
Jiang, Fei ;
Jiang, Song ;
Zhan, Weicheng .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (12) :2299-2388