Using the SMG scheme to study the Rayleigh-Taylor instability growth in solids

被引:2
|
作者
Luttwak, Gabi [1 ]
机构
[1] Dynamic 123D Consulting, IL-3475859 Haifa, Israel
关键词
Rayleigh Taylor instability; Elastic-plastic flow; SMG scheme VIP limiter; Lagrange hydrodynamics; ALE; MMALE; ELASTIC-PLASTIC SOLIDS; NUMERICAL SIMULATIONS; CONSTITUTIVE MODEL; ACCELERATION; DEFORMATION;
D O I
10.1016/j.compfluid.2020.104603
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Rayleigh-Taylor instability RTI occurs while a less dense fluid is accelerating a denser one Rayleigh (1883); Taylor (1950)[1,2]. Under gravity the material strength damps and prevents RTI formation in solids. However, at higher accelerations RTI will prevail. The Staggered Mesh Godunov (SMG) scheme for Lagrangian Luttwak and Falcovitz (2006)[3] and ALE Luttwak and Falcovitz (2005)[4] hydrodynamics is applied to study the effect of yield strength on the RTI growth. A test problem is set up which extends for solids a well-known test for RTI growth in fluids Loubere et al. (2010)[5]. The SMG scheme employs frameinvariant slope limiters. The convex hull based VIP limiter Luttwak and Falcovitz (2011); Luttwak and Falcovitz (2010)[6,7] is used for vectors and oriented Bounding Box based limiter Luttwak (2015)[8] for the stress tensor. This way, we prevent numerical effects of symmetry breaking to interfere, while following the RTI growth. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Linear analysis of incompressible Rayleigh-Taylor instability in solids
    Piriz, A. R.
    Lopez Cela, J. J.
    Tahir, N. A.
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [2] Numerical simulations of Rayleigh-Taylor instability in elastic solids
    Lopez Cela, J. J.
    Piriz, A. R.
    Serna Moreno, M. C.
    Tahir, N. A.
    LASER AND PARTICLE BEAMS, 2006, 24 (03) : 427 - 435
  • [3] Numerical simulations of onset and growth of Rayleigh-Taylor instability involving solids in converging geometry
    Chang, C. H.
    Douglass, R. W.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 411
  • [4] Rayleigh-Taylor instability in accelerated solid media
    Piriz, A. R.
    Sun, Y. B.
    Tahir, N. A.
    EUROPEAN JOURNAL OF PHYSICS, 2017, 38 (01)
  • [5] Transition to plastic regime for Rayleigh-Taylor instability in soft solids
    Boyaci, Aren
    Banerjee, Arindam
    PHYSICAL REVIEW E, 2024, 109 (05)
  • [6] Thin plate effects in the Rayleigh-Taylor instability of elastic solids
    Piriz, A. R.
    Lopez Cela, J. J.
    Serena Moreno, M. C.
    Tahir, N. A.
    Hoffmann, D. H. H.
    LASER AND PARTICLE BEAMS, 2006, 24 (02) : 275 - 282
  • [7] A study of ALE simulations of Rayleigh-Taylor instability
    Darlington, RM
    McAbee, TL
    Rodrigue, G
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 135 (01) : 58 - 73
  • [8] Granular Rayleigh-Taylor instability
    Vinningland, Jan Ludvig
    Johnsen, Oistein
    Flekkoy, Eirik G.
    Toussaint, Renaud
    Maloy, Knut Jorgen
    POWDERS AND GRAINS 2009, 2009, 1145 : 1067 - +
  • [9] Optimal perturbations for controlling the growth of a Rayleigh-Taylor instability
    Kord, Ali
    Capecelatro, Jesse
    JOURNAL OF FLUID MECHANICS, 2019, 876 : 150 - 185
  • [10] The Influence of Viscosity on the Growth Rate of Rayleigh-Taylor Instability
    Malekpour, A.
    Ghasemizad, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2022, 46 (03): : 1065 - 1071