On functions with derivatives in a Lorentz space

被引:75
作者
Kauhanen, J
Koskela, P
Maly, J
机构
[1] Univ Jyvaskyla, Dept Math, FIN-40351 Jyvaskyla, Finland
[2] Charles Univ, Fac Math & Phys, Dept KMA, CZ-18675 Prague 8, Czech Republic
关键词
D O I
10.1007/s002290050197
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a sharp integrability condition on the partial derivatives of a Sobolev mapping to guarantee that sets of measure zero get mapped to sets of measure zero. This condition is sharp also for continuity and differentiability almost everywhere.
引用
收藏
页码:87 / 101
页数:15
相关论文
共 13 条
[1]  
Cesari L, 1942, ANN MAT PUR APPL, V21, P157, DOI 10.1007/BF02412407
[2]   Sobolev embeddings into BMO, VMO, and L∞ [J].
Cianchi, A ;
Pick, L .
ARKIV FOR MATEMATIK, 1998, 36 (02) :317-340
[3]  
FONSECA I, 1995, DEGREE THEORY ANAL A
[4]  
MALY J, 1995, J REINE ANGEW MATH, V458, P19
[5]  
Maly J., 1997, FINE REGULARITY SOLU
[6]  
MALY J, IN PRESS J MATH ANAL
[7]   TRANSFORMATIONS BY FUNCTIONS IN SOBOLEV SPACES AND LOWER SEMICONTINUITY FOR PARAMETRIC VARIATIONAL PROBLEMS [J].
MARCUS, M ;
MIZEL, VJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (04) :790-795
[8]  
MARTIO O, 1992, MICH MATH J, V39, P495
[9]   AN EXISTENCE THEORY FOR NONLINEAR ELASTICITY THAT ALLOWS FOR CAVITATION [J].
MULLER, S ;
SPECTOR, SJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 131 (01) :1-66
[10]  
Rado T., 1955, Continuous transformations in analysis. With an introduction to algebraic topology. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berucksichtigung der Anwendungsgebiete, VLXXV