GEOMETRY OF VECTOR BUNDLE EXTENSIONS AND APPLICATIONS TO A GENERALISED THETA DIVISOR

被引:0
作者
Hitching, George H. [1 ]
机构
[1] Hogskolen Oslo & Akershus, N-0130 Oslo, Norway
关键词
MODULI; THEOREM; CURVE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E and F be vector bundles over a complex projective smooth curve X, and suppose that 0 -> E -> W -> F -> 0 is a nontrivial extension. Let G subset of F be a subbundle and D an effective divisor on X. We give a criterion for the subsheaf G(-D) subset of F to lift to W, in terms of the geometry of a scroll in the extension space PH1 (X, Hom(F, E)). We use this criterion to describe the tangent cone to the generalised theta divisor on the moduli space of semistable bundles of rank r and slope g - 1 over X, at a stable point. This gives a generalisation of a case of the Riemann-Kempf singularity theorem for line bundles over X. In the same vein, we generalise the geometric Riemann-Roch theorem to vector bundles of slope g - 1 and arbitrary rank.
引用
收藏
页码:61 / 77
页数:17
相关论文
共 23 条
  • [1] [Anonymous], 1995, CURRENT TOPICS COMPL
  • [2] Vector bundles and codes on the Hermitian curve
    Coles, D
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (06) : 2113 - 2120
  • [3] Fontanari C, 2004, REND CIRC MAT PALE 2, V53, P429
  • [4] Griffiths P., 1978, PRINCIPLES ALGEBRAIC
  • [5] Hartshorne R., 1977, ALGEBRAIC GEOM, V52
  • [6] Moduli of rank 4 symplectic vector bundles over a curve of genus 2
    Hitching, George H.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 : 255 - 272
  • [7] Hecke curves and hitchin discriminant
    Hwang, JM
    Ramanan, S
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2004, 37 (05): : 801 - 817
  • [8] Johnsen T, 2003, INT J PURE APPL MATH, V4, P33
  • [9] Johnsen T, 2008, NUMBER THEORY ITS AP, V5, P294
  • [10] Kempf G. R., 1983, MONOGRAFIAS I MATEMA, V13