Observability of Renyi's entropy

被引:51
作者
Jizba, P [1 ]
Arimitsu, T [1 ]
机构
[1] Univ Tsukuba, Inst Phys, Tsukuba 3058571, Japan
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 02期
关键词
D O I
10.1103/PhysRevE.69.026128
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Despite recent claims we argue that Renyi's entropy is an observable quantity. It is shown that, contrary to popular belief, the reported domain of instability for Renyi entropies has zero measure (Bhattacharyya measure). In addition, we show that the instabilities can be easily emended by introducing a coarse graining into an actual measurement. We also clear up any doubts regarding the observability of Renyi's entropy in (multi)fractal systems and in systems with absolutely continuous probability density functions.
引用
收藏
页码:026128 / 1
页数:12
相关论文
共 55 条
[51]  
SULEYMANOV MK, HEPPH0304206
[52]   SCALING STRUCTURES OF CHAOTIC ATTRACTORS AND Q-PHASE TRANSITIONS AT CRISES IN THE HENON AND THE ANNULUS MAPS [J].
TOMITA, K ;
HATA, H ;
HORITA, T ;
MORI, H ;
MORITA, T .
PROGRESS OF THEORETICAL PHYSICS, 1988, 80 (06) :953-972
[53]   POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS [J].
TSALLIS, C .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :479-487
[54]  
Williams D, 1991, Probability with martingales
[55]   STATISTICAL DISTANCE AND HILBERT-SPACE [J].
WOOTTERS, WK .
PHYSICAL REVIEW D, 1981, 23 (02) :357-362