Multiscale modelling reveals higher charge transport efficiencies of DNA relative to RNA independent of mechanism

被引:11
作者
Aggarwal, Abhishek [1 ]
Bag, Saientan [1 ]
Venkatramani, Ravindra [2 ]
Jain, Manish [1 ]
Maiti, Prabal K. [1 ]
机构
[1] Indian Inst Sci, Dept Phys, Ctr Condensed Matter Theory, Bangalore 560012, Karnataka, India
[2] Tata Inst Fundamental Res, Dept Chem Sci, Mumbai 400005, Maharashtra, India
关键词
ELECTRON-TRANSFER; FORCE-FIELD; CONDUCTANCE; BACKBONE; OLIGONUCLEOTIDES; POLYMORPHISM; PARAMETERS; MIGRATION; DUPLEXES; SYSTEMS;
D O I
10.1039/d0nr02382e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we compare the charge transport properties of multiple double-stranded (ds)RNA sequences with corresponding dsDNA sequences. Recent studies have presented a contradictory picture of relative charge transport efficiencies in A-form DNA : RNA hybrids and dsDNA. Using a multiscale modelling framework, we compute conductance of dsDNA and dsRNA using Landauer formalism in the coherent limit and Marcus-Hush theory in the incoherent limit. We find that dsDNA conducts better than dsRNA in both the charge transport regimes. Our analysis shows that the structural differences in the twist angle and slide of dsDNA and dsRNA are the main reasons behind the higher conductance of dsDNA in the incoherent hopping regime. In the coherent limit however, for the same base pair length, the conductance of dsRNA is higher than that of dsDNA for the morphologies where dsRNA has a smaller end-to-end length relative to that of dsDNA.
引用
收藏
页码:18750 / 18760
页数:11
相关论文
共 80 条
  • [71] Microsecond Simulation of Electron Transfer in DNA: Bottom-Up Parametrization of an Efficient Electron Transfer Model Based on Atomistic Details
    Wolter, Mario
    Elstner, Marcus
    Kleinekathoefer, Ulrich
    Kubar, Tomas
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (03) : 529 - 549
  • [72] Hole Transport in A-form DNA/RNA Hybrid Duplexes
    Wong, Jiun Ru
    Shao, Fangwei
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [73] Carrier mobility in double-helix DNA and RNA: A quantum chemistry study with Marcus-Hush theory
    Wu, Tao
    Sun, Lei
    Shi, Qi
    Deng, Kaiming
    Deng, Weiqiao
    Lu, Ruifeng
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (23)
  • [74] Gate-controlled conductance switching in DNA
    Xiang, Limin
    Palma, Julio L.
    Li, Yueqi
    Mujica, Vladimiro
    Ratner, Mark A.
    Tao, Nongjian
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [75] Xiang LM, 2015, NAT CHEM, V7, P221, DOI [10.1038/NCHEM.2183, 10.1038/nchem.2183]
  • [76] Optimizing Single-Molecule Conductivity of Conjugated Organic Oligomers with Carbodithioate Linkers
    Xing, Yangjun
    Park, Tae-Hong
    Venkatramani, Ravindra
    Keinan, Shahar
    Beratan, David N.
    Therien, Michael J.
    Borguet, Eric
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (23) : 7946 - 7956
  • [77] Direct conductance measurement of single DNA molecules in aqueous solution
    Xu, BQ
    Zhang, PM
    Li, XL
    Tao, NJ
    [J]. NANO LETTERS, 2004, 4 (06) : 1105 - 1108
  • [78] Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA
    Zgarbova, Marie
    Sponer, Jiri
    Otyepka, Michal
    Cheatham, Thomas E., III
    Galindo-Murillo, Rodrigo
    Jurecka, Petr
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (12) : 5723 - 5736
  • [79] Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters
    Zgarbova, Marie
    Javier Luque, F.
    Sponer, Jiri
    Cheatham, Thomas E., III
    Otyepka, Michal
    Jurecka, Petr
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (05) : 2339 - 2354
  • [80] Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles
    Zgarbova, Marie
    Otyepka, Michal
    Sponer, Jiri
    Mladek, Arnost
    Banas, Pavel
    Cheatham, Thomas E., III
    Jurecka, Petr
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (09) : 2886 - 2902