An Efficient Total Variation Minimization Method for Image Restoration

被引:19
作者
Cong Thang Pham [1 ]
Thi Thu Thao Tran [2 ]
Gamard, Guilhem [3 ]
机构
[1] Univ Danang Univ Sci & Technol, 54 Nguyen Luong Bang, Danang, Vietnam
[2] Univ Danang Univ Econ, 71 Ngu Hanh Son, Danang, Vietnam
[3] ENS Lyon, LIP, 46 Allee Italie, F-69364 Lyon, France
关键词
total variation; image restoration; mixed Poisson-Gaussian noise; convex optimization; split-Bregman method; RESTORING BLURRED IMAGES; POISSON; NOISE; ALGORITHM;
D O I
10.15388/20-INFOR407
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present an effective algorithm for solving the Poisson-Gaussian total variation model. The existence and uniqueness of solution for the mixed Poisson-Gaussian model are proved. Due to the strict convexity of the model, the split-Bregman method is employed to solve the minimization problem. Experimental results show the effectiveness of the proposed method for mixed Poisson-Gaussion noise removal. Comparison with other existing and well-known methods is provided as well.
引用
收藏
页码:539 / 560
页数:22
相关论文
共 34 条
[1]  
[Anonymous], 2006, SYNTHESIS LECT IMAGE
[2]   A variational approach to removing multiplicative noise [J].
Aubert, Gilles ;
Aujol, Jean-Francois .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (04) :925-946
[3]   Heat flows and related minimization problem in image restoration [J].
Barcelos, CAZ ;
Chen, Y .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (5-6) :81-97
[4]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[5]   Infimal Convolution of Data Discrepancies for Mixed Noise Removal [J].
Calatroni, Luca ;
De Los Reyes, Juan Carlos ;
Schoenlieb, Carola-Bibiane .
SIAM JOURNAL ON IMAGING SCIENCES, 2017, 10 (03) :1196-1233
[6]   IMAGE DENOISING: LEARNING THE NOISE MODEL VIA NONSMOOTH PDE-CONSTRAINED OPTIMIZATION [J].
Carlos De los Reyes, Juan ;
Schoenlieb, Carola-Bibiane .
INVERSE PROBLEMS AND IMAGING, 2013, 7 (04) :1183-1214
[7]  
Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
[8]  
Chambolle A., 2010, Theoretical foundations and numerical methods for sparse recovery, P263, DOI DOI 10.1515/9783110226157.263
[9]  
Chan TF, 2005, IMAGE PROCESSING AND ANALYSIS, P1, DOI 10.1137/1.9780898717877
[10]   A Convex Approach for Image Restoration with Exact Poisson-Gaussian Likelihood [J].
Chouzenoux, Emilie ;
Jezierska, Anna ;
Pesquet, Jean-Christophe ;
Talbot, Hugues .
SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (04) :2662-2682