Interfacial band-edge energetics for solar fuels production

被引:166
作者
Smith, Wilson A. [1 ]
Sharp, Ian D. [2 ,3 ]
Strandwitz, Nicholas C. [4 ,5 ]
Bisquert, Juan [6 ,7 ]
机构
[1] Delft Univ Technol, Fac Sci Appl, Dept Chem Engn, Mat Energy Convers & Storage, NL-2628 BL Delft, Netherlands
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA
[4] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
[5] Lehigh Univ, Ctr Adv Mat & Nanotechnol, Bethlehem, PA 18015 USA
[6] Univ Jaume 1, Inst Adv Mat INAM, Castellon de La Plana 12071, Spain
[7] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah, Saudi Arabia
关键词
PHOTOCHEMICAL FUNCTIONALIZATION; PHOTOELECTRON-SPECTROSCOPY; AQUEOUS-ELECTROLYTES; SURFACE CONDUCTIVITY; SILICON PHOTOANODES; HYDROGEN-PRODUCTION; CHARGE SEPARATION; WATER; EFFICIENCY; PHOTOCATHODES;
D O I
10.1039/c5ee01822f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photoelectrochemical (PEC) water splitting has received growing attention as a potential pathway to replace fossil fuels and produce a clean, renewable, and sustainable source of fuel. To achieve overall water splitting and the associated production of solar fuels, complex devices are needed to efficiently capture light from the sun, separate photogenerated charges, and catalyze reduction and oxidation reactions. To date, the highest performing solar fuels devices rely on multi-component systems, which introduce interfaces that can be associated with further performance loss due to thermodynamic and kinetic considerations. In this review, we identify several of the most important interfaces used in PEC water splitting, summarize methods to characterize them, and highlight approaches to mitigating associated loss mechanisms.
引用
收藏
页码:2851 / 2862
页数:12
相关论文
共 77 条
[1]   Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode [J].
Abdi, Fatwa F. ;
Han, Lihao ;
Smets, Arno H. M. ;
Zeman, Miro ;
Dam, Bernard ;
van de Krol, Roel .
NATURE COMMUNICATIONS, 2013, 4
[2]   Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting [J].
Ager, Joel W. ;
Shaner, Matthew R. ;
Walczak, Karl A. ;
Sharp, Ian D. ;
Ardo, Shane .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :2811-2824
[3]   Using "Tender" X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface [J].
Axnanda, Stephanus ;
Crumlin, Ethan J. ;
Mao, Baohua ;
Rani, Sana ;
Chang, Rui ;
Karlsson, Patrik G. ;
Edwards, Marten O. M. ;
Lundqvist, Mans ;
Moberg, Robert ;
Ross, Phil ;
Hussain, Zahid ;
Liu, Zhi .
SCIENTIFIC REPORTS, 2015, 5
[4]   Direct Work Function Measurement by Gas Phase Photoelectron Spectroscopy and Its Application on PbS Nanoparticles [J].
Axnanda, Stephanus ;
Scheele, Marcus ;
Crumlin, Ethan ;
Mao, Baohua ;
Chang, Rui ;
Rani, Sana ;
Faiz, Mohamed ;
Wang, Suidong ;
Alivisatos, A. Paul ;
Liu, Zhi .
NANO LETTERS, 2013, 13 (12) :6176-6182
[5]   Surface photovoltage measurements in liquids [J].
Bastide, S ;
Gal, D ;
Cahen, D ;
Kronik, L .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (10) :4032-4036
[6]   Charge transfer processes at the semiconductor/electrolyte interface for solar fuel production: insight from impedance spectroscopy [J].
Bertoluzzi, Luca ;
Lopez-Varo, Pilar ;
Jimenez Tejada, Juan Antonio ;
Bisquert, Juan .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (08) :2873-2879
[7]   Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays [J].
Boettcher, Shannon W. ;
Warren, Emily L. ;
Putnam, Morgan C. ;
Santori, Elizabeth A. ;
Turner-Evans, Daniel ;
Kelzenberg, Michael D. ;
Walter, Michael G. ;
McKone, James R. ;
Brunschwig, Bruce S. ;
Atwater, Harry A. ;
Lewis, Nathan S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (05) :1216-1219
[8]   LIMITING AND REALIZABLE EFFICIENCIES OF SOLAR PHOTOLYSIS OF WATER [J].
BOLTON, JR ;
STRICKLER, SJ ;
CONNOLLY, JS .
NATURE, 1985, 316 (6028) :495-500
[9]   Enhancing the Performances of P3HT:PCBM-MoS3-Based H2-Evolving Photocathodes with Interfacial Layers [J].
Bourgeteau, Tiphaine ;
Tondelier, Denis ;
Geffroy, Bernard ;
Brisse, Romain ;
Cornut, Renaud ;
Artero, Vincent ;
Jousselme, Bruno .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (30) :16395-16403
[10]  
Brillet J, 2012, NAT PHOTONICS, V6, P823, DOI [10.1038/nphoton.2012.265, 10.1038/NPHOTON.2012.265]