Void and secondary phase formation mechanisms of CZTSSe using Sn/Cu/ Zn/Mo stacked elemental precursors

被引:70
作者
Kim, Se-Yun [1 ]
Son, Dae-Ho [1 ]
Kim, Young-Ill [1 ]
Kim, Seung-Hyun [1 ]
Kim, Sammi [1 ]
Ahn, Kwangseok [1 ]
Sung, Shi-Joon [1 ]
Hwang, Dae-Kue [1 ]
Yang, Kee-Jeong [1 ]
Kang, Jin-Kyu [1 ]
Kim, Dae-Hwan [1 ]
机构
[1] DGIST, Convergence Res Ctr Solar Energy, Daegu 42988, South Korea
基金
新加坡国家研究基金会;
关键词
CZTSSe; Metal precursor; Two-step process; Void; Secondary phase; Formation mechanism; SOLAR-CELL; CU2ZNSNS4; FILMS; LAYERS; CRYSTALLIZATION; SULFURIZATION;
D O I
10.1016/j.nanoen.2019.02.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent years, Cu2ZnSn(S1-xSex)(4) (CZTSSe) prepared by a two-step process using metal precursors has been reported to exhibit a relatively high power conversion efficiency, and a high efficiency of 12.5% by two-step process contained via sputtering method was recently confirmed by our group. In this study, we proposed formation mechanisms for the CZTSSe double layer, voids and ZnSSe layer, which were observed in the CZTSSe using metal precursor. Due to the persistent dezincification from the metal precursors and preferential reaction between the Zn and chalcogens such as S and Se, almost all Zn is consumed to form the ZnSSe layer; as a result, large voids are produced first under the ZnSSe layer. Cu2Se and SnSe are grown on the ZnSSe layer via migration of the Cu and Sn through the grain boundaries of the ZnSSe layer. Thus, additional small voids are expected to form due to the mass transfer of Cu and Sn. Because of the preferentially formed ZnSSe layer and the chalcogenation of Cu and Sn after the mass transfer, a CZTSSe double layer can be formed, and ZnSSe can exist between these CZTSSe layers. Finally, we propose a method based on the formation mechanism to control the voids and secondary phases, which affect the fill factor and output current.
引用
收藏
页码:399 / 411
页数:13
相关论文
共 36 条
[1]  
[Anonymous], THESIS
[2]  
[Anonymous], EQ DIAGR COPP ALL
[3]   Toxicity of organometal halide perovskite solar cells [J].
Babayigit, Aslihan ;
Ethirajan, Anitha ;
Muller, Marc ;
Conings, Bert .
NATURE MATERIALS, 2016, 15 (03) :247-251
[4]   Simplified formation process for Cu2ZnSnS4-based solar cells [J].
Berg, Dominik M. ;
Crossay, Alexandre ;
Guillot, Jerome ;
Izquierdo-Roca, Victor ;
Perez-Rodriguez, Alejandro ;
Ahmed, Shafaat ;
Deligianni, Hariklia ;
Siebentritt, Susanne ;
Dale, Phillip J. .
THIN SOLID FILMS, 2014, 573 :148-158
[5]  
Berger L. I., 1973, Inorganic Materials, V9, P201
[6]   Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells [J].
Brammertz, G. ;
Buffiere, M. ;
Oueslati, S. ;
ElAnzeery, H. ;
Ben Messaoud, K. ;
Sahayaraj, S. ;
Koeble, C. ;
Meuris, M. ;
Poortmans, J. .
APPLIED PHYSICS LETTERS, 2013, 103 (16)
[7]   Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells [J].
Chalapathy, R. B. V. ;
Jung, Gwang Sun ;
Ahn, Byung Tae .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (12) :3216-3221
[8]   On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks [J].
Fairbrother, Andrew ;
Fontane, Xavier ;
Izquierdo-Roca, Victor ;
Espindola-Rodriguez, Moises ;
Lopez-Marino, Simon ;
Placidi, Marcel ;
Calvo-Barrio, Lorenzo ;
Perez-Rodriguez, Alejandro ;
Saucedo, Edgardo .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 112 :97-105
[9]   The Cu-Sn phase diagram, Part I: New experimental results [J].
Fuertauer, S. ;
Li, D. ;
Cupid, D. ;
Flandorfer, H. .
INTERMETALLICS, 2013, 34 :142-147
[10]   Sputtering processed highly efficient Cu2ZnSn(S,Se)4 solar cells by a low-cost, simple, environmentally friendly, and up-scalable strategy [J].
Gang, Myeng Gil ;
Shin, Seung Wook ;
Hong, Chang Woo ;
Gurav, K. V. ;
Gwak, Jihye ;
Yun, Jae Ho ;
Lee, Jeong Yong ;
Kim, Jin Hyeok .
GREEN CHEMISTRY, 2016, 18 (03) :700-711