De novo biosynthetic pathways: rational design of microbial chemical factories

被引:108
作者
Prather, Kristala L. Jones [1 ]
Martin, Collin H. [1 ]
机构
[1] MIT, Dept Chem Engn, SynBERC, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.copbio.2008.07.009
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Increasing interest in the production of organic compounds from non-petroleum-derived feedstocks, especially biomass, is a significant driver for the construction of new recombinant microorganisms for this purpose. As a discipline, Metabolic Engineering has provided a framework for the development of such systems. Efforts have traditionally been focused, first, on the optimization of natural producers, later progressing towards re-construction of natural pathways in heterologous hosts. To maximize the potential of microbes for biosynthetic purposes, new tools and methodologies within Metabolic Engineering are needed for the proposition and construction of de novo designed pathways. This review will focus on recent advances towards the design and assembly of biosynthetic pathways, and provide a Synthetic Biology perspective for the construction of microbial chemical factories.
引用
收藏
页码:468 / 474
页数:7
相关论文
共 56 条
[1]   Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization [J].
Aharoni, A ;
Gaidukov, L ;
Yagur, S ;
Toker, L ;
Silman, I ;
Tawfik, DS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (02) :482-487
[2]   Environmentally controlled invasion of cancer cells by engineered bacteria [J].
Anderson, JC ;
Clarke, EJ ;
Arkin, AP ;
Voigt, CA .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 355 (04) :619-627
[3]   Synthetic biology: new engineering rules for an emerging discipline [J].
Andrianantoandro, Ernesto ;
Basu, Subhayu ;
Karig, David K. ;
Weiss, Ron .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0028
[4]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13
[5]   Systems biology as a foundation for genome-scale synthetic biology [J].
Barrett, Christian L. ;
Kim, Tae Yong ;
Kim, Hyun Uk ;
Palsson, Bernhard O. ;
Lee, Sang Yup .
CURRENT OPINION IN BIOTECHNOLOGY, 2006, 17 (05) :488-492
[6]   A synthetic multicellular system for programmed pattern formation [J].
Basu, S ;
Gerchman, Y ;
Collins, CH ;
Arnold, FH ;
Weiss, R .
NATURE, 2005, 434 (7037) :1130-1134
[7]   Monoterpene biosynthesis pathway construction in Escherichia coli [J].
Carter, OA ;
Peters, RJ ;
Croteau, R .
PHYTOCHEMISTRY, 2003, 64 (02) :425-433
[8]   Engineering Escherichia coli for production of functionalized terpenoids using plant P450s [J].
Chang, Michelle C. Y. ;
Eachus, Rachel A. ;
Trieu, William ;
Ro, Dae-Kyun ;
Keasling, Jay D. .
NATURE CHEMICAL BIOLOGY, 2007, 3 (05) :274-277
[9]   Innovative metabolic pathway design for efficient L-glutamate production by suppressing CO2 emission [J].
Chinen, Akito ;
Kozlov, Yuri I. ;
Hara, Yoshihiko ;
Izui, Hiroshi ;
Yasueda, Hisashi .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2007, 103 (03) :262-269
[10]   Recent efforts in engineering microbial cells to produce new chemical compounds [J].
de Boer, AL ;
Schmidt-Dannert, C .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2003, 7 (02) :273-278