Growth of ZnO Nanostructures at Different Reactant Concentrations for Inverted Organic Solar Cell

被引:0
作者
Yap, Chi Chin [1 ]
Abu Bakar, Ainu [1 ]
Yahaya, Muhammad [1 ]
Salleh, Muhamad Mat [2 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Appl Phys, Ukm Bangi 43600, Selangor, Malaysia
[2] Univ Kebangsaan Malaysia, Inst Microengn & Nanoelect, Bangi 43600, Selangor, Malaysia
来源
ADVANCEMENT OF MATERIALS AND NANOTECHNOLOGY II | 2012年 / 545卷
关键词
ZnO nanostructures; nanorod arrays; chemical solution method; inverted organic solar cell; LOW-TEMPERATURE GROWTH; NANOROD ARRAYS; MORPHOLOGY;
D O I
10.4028/www.scientific.net/AMR.545.71
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The effects of reactant concentration on the growth of ZnO nanostructures and the photovoltaic performance of inverted organic solar cells based on a blend of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) as donor and (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) as acceptor with a structure of FTO/ZnO nanostructures/MEHPPV:PCBM/Ag utilizing ZnO nanostructures as electron collecting layer and silver as a hole collecting electrode were investigated. The ZnO preparation consisted of ZnO nanoparticles seed layer coating and followed by ZnO nanostructures growth in equimolar aqueous solution of zinc nitrate hexahydrate (0.02-0.08 M) and hexamethylenetetramine (0.02-0.08 M). ZnO nanorods having diameter of 50-70 nm and with length up to 120 nm were obtained at reactant concentration of 0.04 M. The ZnO nanorods started to merge with each other and formed irregular nanostructures vertically on the substrates at higher reactant concentrations of 0.06 M and 0.08 M. The solar cell with ZnO nanorods prepared at reactant concentration of 0.04 M provided the largest interface area between polymer active layer and ZnO, resulting in the highest power conversion efficiency of 0.053 % with short circuit current density of 0.43 mA/cm(2), open circuit voltage of 0.42 V and fill factor of 29 %.
引用
收藏
页码:71 / +
页数:2
相关论文
共 16 条
[1]   A facile route to ZnO nanorod arrays using wet chemical method [J].
Chen, Zhitao ;
Gao, Lian .
JOURNAL OF CRYSTAL GROWTH, 2006, 293 (02) :522-527
[2]   Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions [J].
Guo, M ;
Diao, P ;
Cai, SM .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (06) :1864-1873
[3]   Electrochemically grown ZnO nanorods for hybrid solar cell applications [J].
Hames, Yakup ;
Alpaslan, Zuehal ;
Koesemen, Arif ;
San, Sait Eren ;
Yerli, Yusuf .
SOLAR ENERGY, 2010, 84 (03) :426-431
[4]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899
[5]   Nanowire dye-sensitized solar cells [J].
Law, M ;
Greene, LE ;
Johnson, JC ;
Saykally, R ;
Yang, PD .
NATURE MATERIALS, 2005, 4 (06) :455-459
[6]  
Lee K.H., 2010, NANOSCALE R IN PRESS
[7]   CdSe-Sensitized p-CuSCN/nanowire n-ZnO heterojunctions [J].
Lévy-Clément, C ;
Tena-Zaera, R ;
Ryan, MA ;
Katty, A ;
Hodes, G .
ADVANCED MATERIALS, 2005, 17 (12) :1512-1515
[8]  
Liu R, 2001, CHEM MATER, V13, P508, DOI 10.1021/cm0007631
[9]   The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices [J].
Olson, Dana C. ;
Shaheen, Sean E. ;
Collins, Reuben T. ;
Ginley, David S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (44) :16670-16678
[10]   Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method [J].
Polsongkram, D. ;
Chamninok, P. ;
Pukird, S. ;
Chow, L. ;
Lupan, O. ;
Chai, G. ;
Khallaf, H. ;
Park, S. ;
Schulte, A. .
PHYSICA B-CONDENSED MATTER, 2008, 403 (19-20) :3713-3717