Interpreting lattice-valued set theory in fuzzy set theory

被引:3
作者
Hajek, Petr [1 ]
Hanikova, Zuzana [1 ]
机构
[1] Acad Sci Czech Republic, Inst Comp Sci, Prague 18207, Czech Republic
关键词
Lattice-valued logic; lattice-valued set theory; basic fuzzy logic; fuzzy set theory; LOGIC;
D O I
10.1093/jigpal/jzs023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An interpretation of lattice-valued logic, defined by Titani, in basic fuzzy logic, defined by Hajek, is presented. Moreover, Titani's axioms of lattice-valued set theory are interpreted in fuzzy set theory, as defined by the authors.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 16 条
[1]   Fuzzy logics as the logics of chains [J].
Behounek, L ;
Cintula, P .
FUZZY SETS AND SYSTEMS, 2006, 157 (05) :604-610
[2]   The LII and LII1/2 propositional and predicate logics [J].
Cintula, P .
FUZZY SETS AND SYSTEMS, 2001, 124 (03) :289-302
[3]  
Esteva F, 2001, ARCH MATH LOGIC, V40, P39, DOI 10.1007/s001530050173
[4]  
Esteva F, 1999, Mathw. Soft Comput., V6, P219
[5]  
Gottwald S., 2009, WITNESSED YEARS ESSA, P193
[6]  
Gottwald Siegfried., 2006, STUD LOGICA, V82, P211
[7]  
Grayson R.J., 1979, LECT NOTES MATH, V753, P402, DOI DOI 10.1007/BFB0061825
[8]  
Hájek P, 2003, STUD FUZZ SOFT COMP, V114, P273
[9]   A set theory within fuzzy logic [J].
Hájek, P ;
Haniková, Z .
31ST INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2001, :319-323
[10]  
HAJEK P, 2000, P E W FUZZ C 2000 ZI, P2