Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers

被引:222
作者
Lei, Hai [1 ,2 ]
Dong, Liang [1 ]
Li, Ying [1 ,3 ]
Zhang, Junsheng [1 ]
Chen, Huiyan [1 ]
Wu, Junhua [4 ]
Zhang, Yu [1 ]
Fan, Qiyang [5 ,6 ]
Xue, Bin [1 ]
Qin, Meng [1 ]
Chen, Bin [5 ,6 ]
Cao, Yi [1 ,2 ]
Wang, Wei [1 ]
机构
[1] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Chem & Biomed Innovat Ctr, Nanjing 210093, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Chem & Mat Sci, Inst Adv Mat & Flexible Elect IAMFE, Nanjing 210044, Peoples R China
[4] Nanjing Univ, Med Sch, Jiangsu Key Lab Mol Med, Nanjing 210093, Peoples R China
[5] Zhejiang Univ, Dept Engn Mech, Hangzhou 310027, Peoples R China
[6] Key Lab Soft Machines & Smart Devices Zhejiang Pr, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
TOUGH; CARTILAGE; STRENGTH; NETWORKS; CELLS;
D O I
10.1038/s41467-020-17877-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hydrogel-based devices are widely used as flexible electronics, biosensors, soft robots, and intelligent human-machine interfaces. In these applications, high stretchability, low hysteresis, and anti-fatigue fracture are essential but can be rarely met in the same hydrogels simultaneously. Here, we demonstrate a hydrogel design using tandem-repeat proteins as the cross-linkers and random coiled polymers as the percolating network. Such a design allows the polyprotein cross-linkers only to experience considerable forces at the fracture zone and unfold to prevent crack propagation. Thus, we are able to decouple the hysteresis-toughness correlation and create hydrogels of high stretchability (similar to 1100%), low hysteresis (< 5%), and high fracture toughness (similar to 900Jm(-2)). Moreover, the hydrogels show a high fatigue threshold of similar to 126Jm(-2) and can undergo 5000 load-unload cycles up to 500% strain without noticeable mechanical changes. Our study provides a general route to decouple network elasticity and local mechanical response in synthetic hydrogels. High stretchability, low hysteresis and anti-fatigue fracture are essential for hydrogel-based devices but it is rare to achieve. Here the authors demonstrate a hydrogel design using tandem-repeat proteins as the cross-linkers and random coiled polymers as the percolating network which results in high stretchability, low hysteresis and high fracture toughness.
引用
收藏
页数:10
相关论文
共 56 条
[41]   Evaluation of fracture toughness of cartilage by micropenetration [J].
Simha, NK ;
Carlson, CS ;
Lewis, JL .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2004, 15 (05) :631-639
[42]   Highly stretchable and tough hydrogels [J].
Sun, Jeong-Yun ;
Zhao, Xuanhe ;
Illeperuma, Widusha R. K. ;
Chaudhuri, Ovijit ;
Oh, Kyu Hwan ;
Mooney, David J. ;
Vlassak, Joost J. ;
Suo, Zhigang .
NATURE, 2012, 489 (7414) :133-136
[43]  
Sun TL, 2013, NAT MATER, V12, P932, DOI [10.1038/nmat3713, 10.1038/NMAT3713]
[44]   Fatigue fracture of hydrogels [J].
Tang, Jingda ;
Li, Jianyu ;
Vlassak, Joost J. ;
Suo, Zhigang .
EXTREME MECHANICS LETTERS, 2017, 10 :24-31
[45]   Tough and Self-Healing Hydrogels Formed via Hydrophobic Interactions [J].
Tuncaboylu, Deniz C. ;
Sari, Murat ;
Oppermann, Wilhelm ;
Okay, Oguz .
MACROMOLECULES, 2011, 44 (12) :4997-5005
[46]   Criticality and mechanical enhancement in composite fiber networks [J].
van Doorn, Jan Maarten ;
Lageschaar, Luuk ;
Sprakel, Joris ;
van der Gucht, Jasper .
PHYSICAL REVIEW E, 2017, 95 (04)
[47]   Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration [J].
Vatankhah-Varnosfaderani, Mohammad ;
Keith, Andrew N. ;
Cong, Yidan ;
Liang, Heyi ;
Rosenthal, Martin ;
Sztucki, Michael ;
Clair, Charles ;
Magonov, Sergei ;
Ivanov, Dimitri A. ;
Dobrynin, Andrey V. ;
Sheiko, Sergei S. .
SCIENCE, 2018, 359 (6383) :1509-+
[48]   Cytoskeletal polymer networks: The molecular structure of cross-linkers determines macroscopic properties [J].
Wagner, B. ;
Tharmann, R. ;
Haase, I. ;
Fischer, M. ;
Bausch, A. R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (38) :13974-13978
[49]   Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering [J].
Wang, Jianqi ;
Zhang, Fengjie ;
Tsang, Wing Pui ;
Wan, Chao ;
Wu, Chi .
BIOMATERIALS, 2017, 120 :11-21
[50]   Quantitative Adjustment to the Molecular Energy Parameter in the Lake-Thomas Theory of Polymer Fracture Energy [J].
Wang, Shu ;
Panyukov, Sergey ;
Rubinstein, Michael ;
Craig, Stephen L. .
MACROMOLECULES, 2019, 52 (07) :2772-2777