Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers

被引:217
作者
Lei, Hai [1 ,2 ]
Dong, Liang [1 ]
Li, Ying [1 ,3 ]
Zhang, Junsheng [1 ]
Chen, Huiyan [1 ]
Wu, Junhua [4 ]
Zhang, Yu [1 ]
Fan, Qiyang [5 ,6 ]
Xue, Bin [1 ]
Qin, Meng [1 ]
Chen, Bin [5 ,6 ]
Cao, Yi [1 ,2 ]
Wang, Wei [1 ]
机构
[1] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Chem & Biomed Innovat Ctr, Nanjing 210093, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Chem & Mat Sci, Inst Adv Mat & Flexible Elect IAMFE, Nanjing 210044, Peoples R China
[4] Nanjing Univ, Med Sch, Jiangsu Key Lab Mol Med, Nanjing 210093, Peoples R China
[5] Zhejiang Univ, Dept Engn Mech, Hangzhou 310027, Peoples R China
[6] Key Lab Soft Machines & Smart Devices Zhejiang Pr, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
TOUGH; CARTILAGE; STRENGTH; NETWORKS; CELLS;
D O I
10.1038/s41467-020-17877-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hydrogel-based devices are widely used as flexible electronics, biosensors, soft robots, and intelligent human-machine interfaces. In these applications, high stretchability, low hysteresis, and anti-fatigue fracture are essential but can be rarely met in the same hydrogels simultaneously. Here, we demonstrate a hydrogel design using tandem-repeat proteins as the cross-linkers and random coiled polymers as the percolating network. Such a design allows the polyprotein cross-linkers only to experience considerable forces at the fracture zone and unfold to prevent crack propagation. Thus, we are able to decouple the hysteresis-toughness correlation and create hydrogels of high stretchability (similar to 1100%), low hysteresis (< 5%), and high fracture toughness (similar to 900Jm(-2)). Moreover, the hydrogels show a high fatigue threshold of similar to 126Jm(-2) and can undergo 5000 load-unload cycles up to 500% strain without noticeable mechanical changes. Our study provides a general route to decouple network elasticity and local mechanical response in synthetic hydrogels. High stretchability, low hysteresis and anti-fatigue fracture are essential for hydrogel-based devices but it is rare to achieve. Here the authors demonstrate a hydrogel design using tandem-repeat proteins as the cross-linkers and random coiled polymers as the percolating network which results in high stretchability, low hysteresis and high fracture toughness.
引用
收藏
页数:10
相关论文
共 56 条
[1]   Fracture energy of polymer gels with controlled network structures [J].
Akagi, Yuki ;
Sakurai, Hayato ;
Gong, Jian Ping ;
Chung, Ung-il ;
Sakai, Takamasa .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (14)
[2]  
[Anonymous], 2019, CCS CHEM
[3]   Fatigue Fracture of Self-Recovery Hydrogels [J].
Bai, Ruobing ;
Yang, Jiawei ;
Morelle, Xavier P. ;
Yang, Canhui ;
Suo, Zhigang .
ACS MACRO LETTERS, 2018, 7 (03) :312-317
[4]   Fatigue fracture of tough hydrogels [J].
Bai, Ruobing ;
Yang, Quansan ;
Tang, Jingda ;
Morelle, Xavier P. ;
Vlassak, Joost ;
Suo, Zhigang .
EXTREME MECHANICS LETTERS, 2017, 15 :91-96
[5]   Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement [J].
Brangwynne, Clifford P. ;
MacKintosh, Frederick C. ;
Kumar, Sanjay ;
Geisse, Nicholas A. ;
Talbot, Jennifer ;
Mahadevan, L. ;
Parker, Kevin K. ;
Ingber, Donald E. ;
Weitz, David A. .
JOURNAL OF CELL BIOLOGY, 2006, 173 (05) :733-741
[6]   Nonlinear elasticity of composite networks of stiff biopolymers with flexible linkers [J].
Broedersz, C. P. ;
Storm, C. ;
MacKintosh, F. C. .
PHYSICAL REVIEW LETTERS, 2008, 101 (11)
[7]   From mechanical resilience to active material properties in biopolymer networks [J].
Burla, Federica ;
Mulla, Yuval ;
Vos, Bart E. ;
Aufderhorst-Roberts, Anders ;
Koenderink, Gijsje H. .
NATURE REVIEWS PHYSICS, 2019, 1 (04) :249-263
[8]   A practical guide to hydrogels for cell culture [J].
Caliari, Steven R. ;
Burdick, Jason A. .
NATURE METHODS, 2016, 13 (05) :405-414
[9]   Polyprotein of GB1 is an ideal artificial elastomeric protein [J].
Cao, Yi ;
Li, Hongbin .
NATURE MATERIALS, 2007, 6 (02) :109-114
[10]   Broadband and multiband vibration mitigation in lattice metamaterials with sinusoidally-shaped ligaments [J].
Chen, Yanyu ;
Qian, Feng ;
Zuo, Lei ;
Scarpa, Fabrizio ;
Wang, Lifeng .
EXTREME MECHANICS LETTERS, 2017, 17 :24-32