DEL PEZZO SURFACES WITHOUT A RATIONAL POINT ON A COHOMOLOGICAL DIMENSION BODY

被引:19
作者
Colliot-Thelene, Jean-Louis [1 ]
Madore, David A. [1 ]
机构
[1] Univ Paris 11, F-91405 Orsay, France
关键词
D O I
10.1017/S1474748004000015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / 16
页数:16
相关论文
共 19 条
[1]  
AMER M., 1976, THESIS U MAINZ
[2]  
[Anonymous], 1983, IZV AKAD NAUK SSSR M
[4]  
BRUMER A, 1978, CR ACAD SCI A MATH, V286, pA679
[5]   HILBERT THEOREM-90 FOR K2, WITH APPLICATION TO THE CHOW GROUPS OF RATIONAL SURFACES [J].
COLLIOTTHELENE, JL .
INVENTIONES MATHEMATICAE, 1983, 71 (01) :1-20
[6]  
CORAY D, 1977, CR ACAD SCI A MATH, V284, P1531
[7]  
Coray D., 1976, Acta Arith, V30, P267
[8]   Every rationally connected variety over the function field of a curve has a rational point [J].
De Jong, AJ ;
Starr, J .
AMERICAN JOURNAL OF MATHEMATICS, 2003, 125 (03) :567-580
[9]   Cohomological dimension and rational points on curves [J].
Ducros, A .
JOURNAL OF ALGEBRA, 1998, 203 (02) :349-354
[10]   Varieties over a finite field with trivial Chow group of 0-cycles have a rational point [J].
Esnault, H .
INVENTIONES MATHEMATICAE, 2003, 151 (01) :187-191