Mitochondrial transcription: Lessons from mouse models

被引:37
作者
Peralta, Susana [1 ]
Wang, Xiao [2 ]
Moraes, Carlos T. [1 ,3 ]
机构
[1] Univ Miami, Miller Sch Med, Dept Neurol, Miami, FL 33136 USA
[2] Univ Miami, Miller Sch Med, Grad Program Canc Biol, Miami, FL 33136 USA
[3] Univ Miami, Miller Sch Med, Dept Cell Biol & Anat, Miami, FL 33136 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS | 2012年 / 1819卷 / 9-10期
关键词
mtDNA; Transcription; MTERF; TFAM; Mitochondria; TERMINATION FACTOR MTERF; MTDNA COPY NUMBER; FACTOR-A TFAM; OXIDATIVE-PHOSPHORYLATION; RIBOSOMAL-RNA; DNA TRANSCRIPTION; IN-VIVO; PENTATRICOPEPTIDE-REPEAT; STIMULATES TRANSCRIPTION; FUNCTIONAL-ANALYSIS;
D O I
10.1016/j.bbagrm.2011.11.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mammalian mitochondrial DNA (mtDNA) is a circular double-stranded DNA genome of similar to 16.5 kilobase pairs (kb) that encodes 13 catalytic proteins of the ATP-producing oxidative phosphorylation system (OXPHOS), and the rRNAs and tRNAs required for the translation of the mtDNA transcripts. All the components needed for transcription and replication of the mtDNA are, therefore, encoded in the nuclear genome, as are the remaining components of the OXPHOS system and the mitochondrial translation machinery. Regulation of mtDNA gene expression is very important for modulating the OXPHOS capacity in response to metabolic requirements and in pathological processes. The combination of in vitro and in vivo studies has allowed the identification of the core machinery required for basal mtDNA transcription in mammals and a few proteins that regulate mtDNA transcription. Specifically, the generation of knockout mouse strains in the last several years, has been key to understanding the basis of mtDNA transcription in vivo. However, it is well accepted that many components of the transcription machinery are still unknown and little is known about mtDNA gene expression regulation under different metabolic requirements or disease processes. In this review we will focus on how the creation of knockout mouse models and the study of their phenotypes have contributed to the understanding of mitochondrial transcription in mammals. This article is part of a Special Issue entitled: Mitochondria! Gene Expression. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:961 / 969
页数:9
相关论文
共 92 条
[1]   Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance [J].
Akman, Hasan O. ;
Dorado, Beatriz ;
Lopez, Luis C. ;
Garcia-Cazorla, Angeles ;
Vila, Maya R. ;
Tanabe, Lauren M. ;
Dauer, William T. ;
Bonilla, Eduardo ;
Tanji, Kurenai ;
Hirano, Michio .
HUMAN MOLECULAR GENETICS, 2008, 17 (16) :2433-2440
[2]   The human mitochondrial transcription termination factor (mTERF) is fully active in vitro in the non-phosphorylated form [J].
Asin-Cayuela, J ;
Schwend, T ;
Farge, G ;
Gustafsson, CM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (27) :25499-25505
[3]  
ATTARDI G, 1988, ANNU REV CELL BIOL, V4, P289, DOI 10.1146/annurev.cb.04.110188.001445
[4]   REGULATION OF OXIDATIVE-PHOSPHORYLATION IN THE MAMMALIAN-CELL [J].
BALABAN, RS .
AMERICAN JOURNAL OF PHYSIOLOGY, 1990, 258 (03) :C377-C389
[5]   Late-onset mitochondrial DNA depletion:: DNA copy number, multiple deletions, and compensation [J].
Barthélémy, C ;
de Baulny, HO ;
Diaz, J ;
Cheval, MA ;
Frachon, P ;
Romero, N ;
Goutieres, F ;
Fardeau, M ;
Lombès, A .
ANNALS OF NEUROLOGY, 2001, 49 (05) :607-617
[6]   The layered structure of human mitochondrial DNA nucleoids [J].
Bogenhagen, Daniel F. ;
Rousseau, Denis ;
Burke, Stephanie .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (06) :3665-3675
[7]   Initiation and beyond: Multiple functions of the human mitochondril transcription machinery [J].
Bonawitz, Nicholas D. ;
Clayton, David A. ;
Shadel, Gerald S. .
MOLECULAR CELL, 2006, 24 (06) :813-825
[8]   Nuclear Respiratory Factor 2 Induces the Expression of Many but Not All Human Proteins Acting in Mitochondrial DNA Transcription and Replication [J].
Bruni, Francesco ;
Polosa, Paola Loguercio ;
Gadaleta, Maria Nicola ;
Cantatore, Palmiro ;
Roberti, Marina .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (06) :3939-3948
[9]   MTERF4 Regulates Translation by Targeting the Methyltransferase NSUN4 to the Mammalian Mitochondrial Ribosome [J].
Camara, Yolanda ;
Asin-Cayuela, Jorge ;
Park, Chan Bae ;
Metodiev, Metodi B. ;
Shi, Yonghong ;
Ruzzenente, Benedetta ;
Kukat, Christian ;
Habermann, Bianca ;
Wibom, Rolf ;
Hultenby, Kjell ;
Franz, Thomas ;
Erdjument-Bromage, Hediye ;
Tempst, Paul ;
Hallberg, B. Martin ;
Gustafsson, Claes M. ;
Larsson, Nils-Goran .
CELL METABOLISM, 2011, 13 (05) :527-539
[10]   Transcription termination at the mouse mitochondrial H-strand promoter distal site requires an A/T rich sequence motif and sequence specific DNA binding proteins [J].
Camasamudram, V ;
Fang, JK ;
Avadhani, NG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2003, 270 (06) :1128-1140