Holographic phase diagram of quark-gluon plasma formed in heavy-ion collisions

被引:19
作者
Aref'eva, I. Ya. [1 ]
Bagrov, A. A. [1 ,2 ]
Pozdeeva, E. O. [3 ]
机构
[1] VA Steklov Math Inst, Moscow 119991, Russia
[2] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
[3] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
Holography and quark-gluon plasmas; Gauge-gravity correspondence; GRAVITATIONAL SHOCK-WAVES; BLACK-HOLES; ENTROPY; SPACE; TEMPERATURE; PARTICLES; SITTER; TIME;
D O I
10.1007/JHEP05(2012)117
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We use a holographic dual model for the heavy-ion collision to obtain the phase diagram of the quark-gluon plasma (QGP) formed at a very early stage Just after the collision. In this dual model, colliding ions are described by the charged gravitational shock waves. Points on the phase diagram correspond to the QGP or hadronic matter with given temperatures and chemical potentials. The phase of the QGP in dual terms is related to the case where the collision of shock waves leads to the formation of a trapped surface. Hadronic matter and other confined states correspond to the absence of a trapped surface after collision. In the dual language, the multiplicity of the ion collision process is estimated as the area of the trapped surface. We show that a nonzero chemical potential reduces the multiplicity. To plot the phase diagram, we use two different dual models of colliding ions, the pointlike and the wall shock waves, and find that the results agree qualitatively.
引用
收藏
页数:34
相关论文
共 84 条
[61]   THE CURVED SHOCK-WAVE SPACE-TIME OF ULTRARELATIVISTIC CHARGED-PARTICLES AND THEIR SCATTERING [J].
LOUSTO, CO ;
SANCHEZ, N .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (05) :915-938
[62]   The large-N limit of superconformal field theories and supergravity [J].
Maldacena, J .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (04) :1113-1133
[63]   Holographic phase transitions at finite chemical potential [J].
Mateos, David ;
Matsuura, Shunji ;
Myers, Robert C. ;
Thornson, Rowan M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (11)
[64]   ENTROPY CREATION IN RELATIVISTIC HEAVY ION COLLISIONS [J].
Mueller, Berndt ;
Schaefer, Andreas .
INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2011, 20 (11) :2235-2267
[65]   Holographic hydrodynamics with a chemical potential [J].
Myers, Robert C. ;
Paulos, Miguel F. ;
Sinha, Aninda .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06)
[66]   Entropy production by resonance decays [J].
Ochs, S ;
Heinz, U .
PHYSICAL REVIEW C, 1996, 54 (06) :3199-3211
[67]  
Ortaggio M., 2006, Journal of Physics: Conference Series, V33, P386, DOI 10.1088/1742-6596/33/1/047
[68]   Holographic QCD with isospin chemical potential [J].
Parnachev, Andrei .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (02)
[69]   Thermodynamics of Reissner-Nordstrom-anti-de Sitter black holes in the grand canonical ensemble -: art. no. 124007. [J].
Peça, CS ;
Lemos, JPS .
PHYSICAL REVIEW D, 1999, 59 (12)
[70]   Impulsive waves in de Sitter and anti-de Sitter spacetimes generated by null particles with an arbitrary multipole structure [J].
Podolsky, J ;
Griffiths, JB .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (02) :453-463