A Strong Convergence Theorem for Relatively Nonexpansive Mappings and Equilibrium Problems in Banach Spaces

被引:0
作者
Yuan, Mei [2 ]
Li, Xi [1 ]
Li, Xue-song [1 ]
Liu, John J. [3 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
[2] Leshan Coll Profess & Technol, Leshan 614000, Sichuan, Peoples R China
[3] City Univ Hong Kong, Coll Business, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
F-PROJECTION OPERATOR; VARIATIONAL-INEQUALITIES; WEAK-CONVERGENCE;
D O I
10.1155/2012/498487
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Relatively nonexpansive mappings and equilibrium problems are considered based on a shrinking projection method. Using properties of the generalized f-projection operator, a strong convergence theorem for relatively nonexpansive mappings and equilibrium problems is proved in Banach spaces under some suitable conditions.
引用
收藏
页数:12
相关论文
共 17 条
[1]  
Alber Y., 2001, Analysis, V21, P17, DOI DOI 10.1524/ANLY.2001.21.1.17
[2]  
Alber Y.I., 1993, Functional-Differential Equations, Funct. Differential Equations Israel Sem., V1, P1
[3]   Proximal projection methods for variational inequalities and Cesaro averaged approximations [J].
Alber, YI .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (8-9) :1107-1124
[4]  
Alber YI, 1996, LECT NOTES PURE APPL, P15
[5]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[6]  
Blum E., 1994, Math. Stud., V63, P127
[7]   Weak convergence of orbits of nonlinear operators in reflexive Banach [J].
Butnariu, D ;
Reich, S ;
Zaslavski, AJ .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (5-6) :489-508
[8]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[9]  
Kamimura SJ, 2003, SIAM J OPTIMIZ, V13, P938
[10]   The generalized projection operator on reflexive Banach spaces and its applications [J].
Li, JL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (01) :55-71