Statistical phase propagation and dispersion analysis of low frequency waves in the magnetosheath

被引:12
|
作者
Schäfer, S
Glassmeier, KH
Narita, Y
Fornaçon, KH
Dandouras, I
Fränz, M
机构
[1] Tech Univ Braunschweig, Inst Geophys & Extraterr Phys, D-3300 Braunschweig, Germany
[2] Ctr Etud Spatiale Rayonnements, Toulouse, France
[3] Max Planck Inst Sonnensyst Forsch, Katlenburg Lindau, Germany
关键词
magnetospheric physics; magnetosheath; plasma waves and instabilities; space plasma physics; shock waves;
D O I
10.5194/angeo-23-3339-2005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the results of a statistical analysis of low-frequency fluctuations in the high latitude regions of the dayside magnetosheath using CLUSTER as a wave telescope. Magnetic field observations are used to determine wave propagation directions and wave numbers for selected frequencies. Using observations of the plasma flow velocity we correct for the Doppler shift, in order to calculate frequencies and phase velocities in the plasma rest frame. This provides us with the possibility to perform a statistical dispersion analysis and to investigate various wave properties, such as the phase velocity and the propagation angle between k and B. The analysis of dispersion distributions and Friedrichs diagrams results in the identification of different wave populations. We find a multiplicity of standing structures (mirror modes) convected with the plasma flow and a large number of Alfvenic waves. The results confirm previous magnetosheath wave studies, such as ISSE or AMPTE spacecraft observations, but we also find a small number of mirror mode-like waves that have propagation speeds up to the local Alfven velocity, quasi-perpendicular to the magnetic field.
引用
收藏
页码:3339 / 3349
页数:11
相关论文
共 50 条
  • [31] Low-frequency waves in the Martian magnetosphere and their response to upstream solar wind driving conditions
    Ruhunusiri, Suranga
    Halekas, J. S.
    Connerney, J. E. P.
    Espley, J. R.
    McFadden, J. P.
    Larson, D. E.
    Mitchell, D. L.
    Mazelle, C.
    Jakosky, B. M.
    GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (21) : 8917 - 8924
  • [32] Low frequency plasma turbulence and high energy particles at CIR-related shock waves
    Classen, HT
    Mann, G
    Forsyth, RJ
    Keppler, E
    ASTRONOMY & ASTROPHYSICS, 1999, 347 (01) : 313 - 320
  • [33] Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection
    Ala-Lahti, Matti M.
    Kilpua, Emilia K. J.
    Dimmock, Andrew P.
    Osmane, Adnane
    Pulkkinen, Tuija
    Soucek, Jan
    ANNALES GEOPHYSICAE, 2018, 36 (03) : 793 - 808
  • [34] Statistical Study of Hot Flow Anomaly Induced Ground Magnetic Ultra-Low Frequency Oscillations
    Wang, Boyi
    Liu, Jiaqi
    Han, Desheng
    Wang, Yi
    Feng, Xueshang
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2024, 129 (08)
  • [35] Statistical study of low-frequency magnetic field fluctuations near Venus during the solar cycle
    Xiao, S. D.
    Zhang, T. L.
    Wang, G. Q.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (08) : 8409 - 8418
  • [36] Kelvin-Helmholtz Instability Associated With Reconnection and Ultra Low Frequency Waves at the Ground: A Case Study
    Kronberg, E. A.
    Gorman, J.
    Nykyri, K.
    Smirnov, A. G.
    Gjerloev, J. W.
    Grigorenko, E. E.
    Kozak, L. V.
    Ma, X.
    Trattner, K. J.
    Friel, M.
    FRONTIERS IN PHYSICS, 2021, 9
  • [37] Comment on "Improved basis set for low frequency plasma waves" by P. M. Bellan
    Lysak, Robert L.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (06) : 3485 - 3487
  • [38] Mechanism for shock wave merging in magnetised plasma: criteria and efficiency of formation of low-frequency magnetosonic waves
    Tishchenko, V. N.
    Shaikhislamov, I. F.
    QUANTUM ELECTRONICS, 2010, 40 (05) : 464 - 469
  • [39] Low-frequency electrostatic waves in the ionospheric E-region:: a comparison of rocket observations and numerical simulations
    Dyrud, L.
    Krane, B.
    Oppenheim, M.
    Pecseli, H. L.
    Schlegel, K.
    Trulsen, J.
    Wernik, A. W.
    ANNALES GEOPHYSICAE, 2006, 24 (11) : 2959 - 2979
  • [40] Analysis of the pressure buildup behind rigid porous media impinged by shock waves in time and frequency domains
    Ram, O.
    Sadot, O.
    JOURNAL OF FLUID MECHANICS, 2015, 779 : 842 - 858