Asymptotics for a variant of the Mittag-Leffler function

被引:46
作者
Gerhold, Stefan [1 ]
机构
[1] Vienna Univ Technol, Inst Math Methods Econ, A-1040 Vienna, Austria
关键词
entire function; Mittag-Leffler function; Plana's summation formula; non-holonomicity;
D O I
10.1080/10652469.2011.596151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the Mittag-Leffler function by attaching an exponent to its Taylor coefficients. The main result is an asymptotic formula valid in sectors of the complex plane, which extends the work by Le Roy [Valeurs asymptotiques de certaines series procedant suivant les puissances entieres et positives d'une variable reelle, Bull. des Sciences Math. 24, 1900] and Evgrafov [Asimptoticheskie otsenki i tselye funktsii, 3rd ed., Nauka, Moscow, 1979]. It is established by Plana's summation formula in conjunction with the saddle point method. As an application, we (re-) prove a non-holonomicity result about powers of the factorial sequence.
引用
收藏
页码:397 / 403
页数:7
相关论文
共 16 条
[1]  
[Anonymous], 1974, APPL COMPUTATIONAL C
[2]   Non-holonomicity of sequences defined via elementary functions [J].
Bell, Jason P. ;
Gerhold, Stefan ;
Klazar, Martin ;
Luca, Florian .
ANNALS OF COMBINATORICS, 2008, 12 (01) :1-16
[3]  
ERDELYI A., 1981, Higher transcendental functions, VIII
[4]  
Evgrafov M.A., 1979, ASIMPTOTICHESKIE O S
[5]  
Flajolet P, 2005, ELECTRON J COMB, V11
[6]  
Flajolet P, 2010, ELECTRON J COMB, V17
[7]  
Gerhold S, 2004, ELECTRON J COMB, V11
[8]  
HARDY GH, 1910, CAMBRIDGE TRACTS MAT, V12
[9]   Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus [J].
Kiryakova, VS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :241-259
[10]  
Le Roy E., 1900, B SCI MATH, V24, P245