Automated reconstruction and conformal discretization of 3D woven composite CT scans with local fiber volume fraction control

被引:50
作者
Wintiba, Badadjida [1 ]
Vasiukov, Dmytro [2 ]
Panier, Stephane [3 ]
Lomov, Stepan, V [4 ]
Kamel, Karim Ehab Moustafa [1 ]
Massart, Thierry J. [1 ]
机构
[1] Univ Libre Bruxelles ULB, Bldg Architecture & Town Planning Dept BATir, CP 194-02,Ave FD Roosevelt 50, B-1050 Brussels, Belgium
[2] IMT Lille Douai, Polymers & Composites Technol & Mech Engn Dept, F-59500 Douai, France
[3] Univ Picardie Jules Verne, Lab Technol Innovantes, LTI EA 3899, F-80025 Amiens, France
[4] Katholieke Univ Leuven, Dept Mat Engn MTM, Leuven, Belgium
关键词
3D textile reinforced composites; CT scan; Gaussian smoothing; Level set; Local fiber content; Damage initiation; TEXTILE COMPOSITES; REINFORCED COMPOSITES; MESH GENERATION; VOXEL MODELS; FE ANALYSES; PERMEABILITY; PREDICTION;
D O I
10.1016/j.compstruct.2020.112438
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An ad hoc methodology for voxel-based geometry reconstruction is proposed. The reconstruction procedure outlined is fully automated and allows transforming explicit voxel RVE geometries into implicit smoothed geometries through a level set-based processing. During this post-processing, the yarns interpenetrations are suppressed, a thin gap is inserted between the contacting yarns and the fiber volume fraction is controlled locally by modifications of the yarns cross section shapes. A conforming tetrahedral mesh can be subsequently generated based on the implicit geometrical description for finite elements simulations. Puck failure indices are used here to compare the damage initiation locations in the microstructure. Results show that damage initiates early and is rather randomly distributed in voxel-based discretizations, whereas it occurs more in the yarns contacting zones and in the higher fiber volume fraction regions for the smoothed RVE.
引用
收藏
页数:19
相关论文
共 55 条
[1]   Modeling strategies of 3D woven composites: A review [J].
Ansar, Mahmood ;
Wang Xinwei ;
Zhou Chouwei .
COMPOSITE STRUCTURES, 2011, 93 (08) :1947-1963
[2]   The conformal alpha shape filtration [J].
Cazals, Frederic ;
Giesen, Joachim ;
Pauly, Mark ;
Zomorodian, Afra .
VISUAL COMPUTER, 2006, 22 (08) :531-540
[3]  
CHAMIS CC, 1989, J COMPOS TECH RES, V11, P3, DOI 10.1520/CTR10143J
[4]   Microscopic investigation of tow geometry changes in a woven prepreg material during draping and consolidation [J].
Chang, SH ;
Sutcliffe, MPF ;
Sharma, SB .
COMPOSITES SCIENCE AND TECHNOLOGY, 2004, 64 (10-11) :1701-1707
[5]   Generating virtual specimens for complex non-periodic woven structures by converting machine instructions into topological ordering rules [J].
Cox, Brian N. ;
Nilakantan, Gaurav ;
Sudre, Olivier ;
Marshall, David B. .
COMPOSITE STRUCTURES, 2016, 141 :63-78
[6]   Finite element implementation of Puck's failure theory for fibre-reinforced composites under three-dimensional stress [J].
Deuschle, H. Matthias ;
Kroeplin, Bernd-H .
JOURNAL OF COMPOSITE MATERIALS, 2012, 46 (19-20) :2485-2513
[7]   Contrast Enhancement of MicroCT Scans to Aid 3D Modelling of Carbon Fibre Fabric Composites [J].
Djukic, Luke P. ;
Pearce, Garth M. ;
Herszberg, Israel ;
Bannister, Michael K. ;
Mollenhauer, David H. .
APPLIED COMPOSITE MATERIALS, 2013, 20 (06) :1215-1230
[8]   Contrast enhancement in visualisation of woven composite architecture using a MicroCT Scanner. Part 2: Tow and preform coatings [J].
Djukic, Luke P. ;
Herszberg, Israel ;
Walsh, William R. ;
Schoeppner, Gregory A. ;
Prusty, B. Gangadhara .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2009, 40 (12) :1870-1879
[9]   Comparison between voxel and consistent meso-scale models of woven composites [J].
Doitrand, A. ;
Fagiano, C. ;
Irisarri, F. -X. ;
Hirsekorn, M. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2015, 73 :143-154
[10]   Processing of fiber architecture data for finite element modeling of 3D woven composites [J].
Drach, Andrew ;
Drach, Borys ;
Tsukrov, Igor .
ADVANCES IN ENGINEERING SOFTWARE, 2014, 72 :18-27