Lower Bound of Concurrence Based on Generalized Positive Maps

被引:3
|
作者
Qin Hui-Hui [1 ]
Fei Shao-Ming [2 ,3 ]
机构
[1] S China Univ Technol, Sch Sci, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[3] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
基金
中国国家自然科学基金;
关键词
lower bound of concurrence; positive maps; QUANTUM ENTANGLEMENT;
D O I
10.1088/0253-6102/60/6/05
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the concurrence of arbitrary dimensional bipartite quantum systems. By using a positive but not completely positive map, we present an analytical lower bound of concurrence. Detailed examples are used to show that our bound can detect entanglement better and can improve the well known existing lower bounds.
引用
收藏
页码:663 / 666
页数:4
相关论文
共 50 条
  • [11] A lower bound of concurrence for multipartite quantum systems
    Zhu, Xue-Na
    Li, Ming
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2018, 17 (02)
  • [12] A lower bound of concurrence for multipartite quantum systems
    Xue-Na Zhu
    Ming Li
    Shao-Ming Fei
    Quantum Information Processing, 2018, 17
  • [13] A lower bound of concurrence for multipartite quantum states
    Li, Ming
    Fei, Shao-Ming
    Wang, Zhi-Xi
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (14)
  • [14] Lower bound of multipartite concurrence based on sub-partite quantum systems
    Chen, Wei
    Zhu, Xue-Na
    Fei, Shao-Ming
    Zheng, Zhu-Jun
    QUANTUM INFORMATION PROCESSING, 2017, 16 (12)
  • [15] Lower bound of multipartite concurrence based on sub-partite quantum systems
    Wei Chen
    Xue-Na Zhu
    Shao-Ming Fei
    Zhu-Jun Zheng
    Quantum Information Processing, 2017, 16
  • [16] An improved lower bound of genuine tripartite entanglement concurrence
    Wang, Jing
    Zhu, Xuena
    Li, Ming
    Shen, Shuqian
    Fei, Shao-Ming
    LASER PHYSICS LETTERS, 2021, 18 (12)
  • [17] Typical features of the Mintert-Buchleitner lower bound for concurrence
    Borras, A.
    Majtey, A. P.
    Plastino, A. R.
    Casas, M.
    Plastino, A.
    PHYSICAL REVIEW A, 2009, 79 (02):
  • [18] A useful strong lower bound on two-qubit concurrence
    Jafarpour, Mojtaba
    Sabour, Abbass
    QUANTUM INFORMATION PROCESSING, 2012, 11 (06) : 1389 - 1402
  • [19] Genuine multipartite entanglement detection and lower bound of multipartite concurrence
    Li, Ming
    Fei, Shao-Ming
    Li-Jost, Xianqing
    Fan, Heng
    PHYSICAL REVIEW A, 2015, 92 (06):
  • [20] A useful strong lower bound on two-qubit concurrence
    Mojtaba Jafarpour
    Abbass Sabour
    Quantum Information Processing, 2012, 11 : 1389 - 1402